Haoyang Zhai, T. Nakano, A. Vasilakos, Kun Yang, Qiang Liu
{"title":"Increase detection algorithm for concentration-encoded diffusion-based molecular communication","authors":"Haoyang Zhai, T. Nakano, A. Vasilakos, Kun Yang, Qiang Liu","doi":"10.1145/3109453.3109465","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a demodulation technique, the increase detection algorithm (IDA), to improve the reliability of concentration-encoded diffusion-based molecular communication. The proposed demodulation technique detects an increase (i.e., a relative concentration value) in molecule concentration to demodulate information as opposed to detecting an absolute concentration value. We evaluate the proposed demodulation technique in terms of bit error rate (BER) and demonstrate that the proposed demodulation technique successfully isolates ISI from concentration-encoded diffusion-based molecular communication to achieve a lower BER than a commonly used demodulation technique.","PeriodicalId":400141,"journal":{"name":"Proceedings of the 4th ACM International Conference on Nanoscale Computing and Communication","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM International Conference on Nanoscale Computing and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3109453.3109465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, we propose a demodulation technique, the increase detection algorithm (IDA), to improve the reliability of concentration-encoded diffusion-based molecular communication. The proposed demodulation technique detects an increase (i.e., a relative concentration value) in molecule concentration to demodulate information as opposed to detecting an absolute concentration value. We evaluate the proposed demodulation technique in terms of bit error rate (BER) and demonstrate that the proposed demodulation technique successfully isolates ISI from concentration-encoded diffusion-based molecular communication to achieve a lower BER than a commonly used demodulation technique.