Small Moving Target MOT Tracking with GM-PHD Filter and Attention-Based CNN

Camilo Aguilar, M. Ortner, J. Zerubia
{"title":"Small Moving Target MOT Tracking with GM-PHD Filter and Attention-Based CNN","authors":"Camilo Aguilar, M. Ortner, J. Zerubia","doi":"10.1109/mlsp52302.2021.9596204","DOIUrl":null,"url":null,"abstract":"We present a multi-object tracking (MOT) approach to track small moving targets in satellite images. Our objects of interest span few pixels, do not present a defined texture, and are easily lost in cluttered environments. We propose a patch-based convolutional neural network (CNN) that focuses on specific regions to detect and discriminate nearby small objects. We use the object motion information to drive the patch selection and detect objects using a region-based CNN. In addition, we present a direct MOT data-association approach by using an improved Gaussian mixture-probability hypothesis density (GM-PHD) filter. The GM-PHD filter offers an efficient yet robust MOT formulation that takes into account clutter, misdetection, and target appearance and disappearance. We are able to detect and track blob-like moving objects and demonstrate an improvement over competing state-of-the-art tracking approaches.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a multi-object tracking (MOT) approach to track small moving targets in satellite images. Our objects of interest span few pixels, do not present a defined texture, and are easily lost in cluttered environments. We propose a patch-based convolutional neural network (CNN) that focuses on specific regions to detect and discriminate nearby small objects. We use the object motion information to drive the patch selection and detect objects using a region-based CNN. In addition, we present a direct MOT data-association approach by using an improved Gaussian mixture-probability hypothesis density (GM-PHD) filter. The GM-PHD filter offers an efficient yet robust MOT formulation that takes into account clutter, misdetection, and target appearance and disappearance. We are able to detect and track blob-like moving objects and demonstrate an improvement over competing state-of-the-art tracking approaches.
基于GM-PHD滤波和基于注意力的CNN的小运动目标MOT跟踪
提出了一种多目标跟踪(MOT)方法来跟踪卫星图像中的小运动目标。我们感兴趣的对象跨越几个像素,不呈现定义的纹理,并且很容易在混乱的环境中丢失。我们提出了一种基于补丁的卷积神经网络(CNN),它专注于特定区域来检测和区分附近的小物体。我们使用物体运动信息来驱动patch选择,并使用基于区域的CNN来检测物体。此外,我们提出了一种使用改进的高斯混合概率假设密度(GM-PHD)滤波器的直接MOT数据关联方法。GM-PHD滤波器提供了一种高效而稳健的MOT配方,可以考虑到杂波、误检以及目标的出现和消失。我们能够检测和跟踪斑点状的移动物体,并展示了比竞争对手的最先进的跟踪方法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信