A. Carlucci, S. Grivet-Talocia, Scott Mongrain, Siddarth Kulasekaran, K. Radhakrishnan
{"title":"A Structured Krylov Subspace Projection Framework for Fast Power Integrity Verification","authors":"A. Carlucci, S. Grivet-Talocia, Scott Mongrain, Siddarth Kulasekaran, K. Radhakrishnan","doi":"10.1109/SPI57109.2023.10145566","DOIUrl":null,"url":null,"abstract":"This paper presents a model order reduction approach, specifically designed for the generation of compact and efficient transient simulation models of system-level power distribution networks (PDN) of multicore processor systems. The proposed approach applies a Krylov subspace projection, with a structure that is adapted to a block-coupled state-space description of individual PDN subsystems. The latter include board-package, averaged models of integrated voltage regulators switching circuitry, and individual models of all cores including regulator inductors and capacitors. Numerical results from pro-posed reduced-order models provide major speedup with respect to SPICE with negligible loss of accuracy.","PeriodicalId":281134,"journal":{"name":"2023 IEEE 27th Workshop on Signal and Power Integrity (SPI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 27th Workshop on Signal and Power Integrity (SPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI57109.2023.10145566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents a model order reduction approach, specifically designed for the generation of compact and efficient transient simulation models of system-level power distribution networks (PDN) of multicore processor systems. The proposed approach applies a Krylov subspace projection, with a structure that is adapted to a block-coupled state-space description of individual PDN subsystems. The latter include board-package, averaged models of integrated voltage regulators switching circuitry, and individual models of all cores including regulator inductors and capacitors. Numerical results from pro-posed reduced-order models provide major speedup with respect to SPICE with negligible loss of accuracy.