Multiplicative approximation of linear multivariable systems with L∞ error bounds

K. Glover
{"title":"Multiplicative approximation of linear multivariable systems with L∞ error bounds","authors":"K. Glover","doi":"10.23919/ACC.1986.4789204","DOIUrl":null,"url":null,"abstract":"It is shown that a p<sup>x</sup>m transfer function G(s) with p⩾m can be decomposed as G = (I-ν<sub>N</sub>Δ<sub>N</sub>)<sup>-1</sup>...(I-ν<sub>r+2</sub>Δ<sub>r+2</sub>)<sup>-1</sup> (I-ν<sub>r=1</sub>Δ<sub>r=1</sub>)<sup>-1</sup>G<sub>O</sub> where Δ<sub>i</sub> are stable all-pass transfer functions, 1=ν<sub>1</sub>..=ν<sub>r</sub>≫ν<sub>r=1</sub>..≫ν<sub>N</sub>≫0 are the Hankel-singular-values of GW*<sup>-1</sup> where G*G=WW* with W stable and minimum phase. Results on the McMillan degree of G<sup>Λ</sup>:=(I-ν<sub>i</sub>Δ<sub>i</sub>)..(I-ν<sub>N</sub>Δ<sub>N</sub>)G then show that G<sup>Λ</sup> gives a good low order approximation to G in the sense of relative error.","PeriodicalId":266163,"journal":{"name":"1986 American Control Conference","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1986 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1986.4789204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

It is shown that a pxm transfer function G(s) with p⩾m can be decomposed as G = (I-νNΔN)-1...(I-νr+2Δr+2)-1 (I-νr=1Δr=1)-1GO where Δi are stable all-pass transfer functions, 1=ν1..=νr≫νr=1..≫νN≫0 are the Hankel-singular-values of GW*-1 where G*G=WW* with W stable and minimum phase. Results on the McMillan degree of GΛ:=(I-νiΔi)..(I-νNΔN)G then show that GΛ gives a good low order approximation to G in the sense of relative error.
具有L∞误差界的线性多变量系统的乘法逼近
研究表明,p大于或等于m的pxm传递函数G(s)可以分解为G = (I-νNΔN)-1…(I-νr+2Δr+2)-1 (I-νr=1Δr=1)-1GO,其中Δi是稳定的全传递函数,1=ν1..=νr > νr=1..< νN > 0是GW*-1的汉克尔奇异值,其中G*G=WW*, W稳定且相位最小。关于GΛ:=(I-νiΔi)..(I-νNΔN)G的麦克米伦度的结果表明,GΛ在相对误差的意义上给出了一个很好的低阶近似G。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信