MISA: Online Defense of Trojaned Models using Misattributions

Panagiota Kiourti, Wenchao Li, Anirban Roy, Karan Sikka, Susmit Jha
{"title":"MISA: Online Defense of Trojaned Models using Misattributions","authors":"Panagiota Kiourti, Wenchao Li, Anirban Roy, Karan Sikka, Susmit Jha","doi":"10.1145/3485832.3485908","DOIUrl":null,"url":null,"abstract":"Recent studies have shown that neural networks are vulnerable to Trojan attacks, where a network is trained to respond to specially crafted trigger patterns in the inputs in specific and potentially malicious ways. This paper proposes MISA, a new online approach to detect Trojan triggers for neural networks at inference time. Our approach is based on a novel notion called misattributions, which captures the anomalous manifestation of a Trojan activation in the feature space. Given an input image and the corresponding output prediction, our algorithm first computes the model’s attribution on different features. It then statistically analyzes these attributions to ascertain the presence of a Trojan trigger. Across a set of benchmarks, we show that our method can effectively detect Trojan triggers for a wide variety of trigger patterns, including several recent ones for which there are no known defenses. Our method achieves 96% AUC for detecting images that include a Trojan trigger without any assumptions on the trigger pattern.","PeriodicalId":175869,"journal":{"name":"Annual Computer Security Applications Conference","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Computer Security Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485832.3485908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recent studies have shown that neural networks are vulnerable to Trojan attacks, where a network is trained to respond to specially crafted trigger patterns in the inputs in specific and potentially malicious ways. This paper proposes MISA, a new online approach to detect Trojan triggers for neural networks at inference time. Our approach is based on a novel notion called misattributions, which captures the anomalous manifestation of a Trojan activation in the feature space. Given an input image and the corresponding output prediction, our algorithm first computes the model’s attribution on different features. It then statistically analyzes these attributions to ascertain the presence of a Trojan trigger. Across a set of benchmarks, we show that our method can effectively detect Trojan triggers for a wide variety of trigger patterns, including several recent ones for which there are no known defenses. Our method achieves 96% AUC for detecting images that include a Trojan trigger without any assumptions on the trigger pattern.
MISA:使用错误归因的木马模型的在线防御
最近的研究表明,神经网络很容易受到特洛伊木马攻击,在特洛伊木马攻击中,神经网络被训练成以特定的、潜在的恶意方式响应输入中精心制作的触发模式。本文提出了一种在推理时在线检测神经网络木马触发器的新方法MISA。我们的方法是基于一个叫做错误归因的新概念,它捕获了特洛伊木马在特征空间中激活的异常表现。给定输入图像和相应的输出预测,我们的算法首先计算模型在不同特征上的属性。然后,它会统计分析这些归因,以确定是否存在木马触发器。通过一组基准测试,我们证明了我们的方法可以有效地检测各种触发模式的木马触发器,包括一些最近没有已知防御措施的触发器。我们的方法在检测包含木马触发器的图像时达到96%的AUC,而无需对触发模式进行任何假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信