Collaborative ordinal regression

Shipeng Yu, Kai Yu, Volker Tresp, H. Kriegel
{"title":"Collaborative ordinal regression","authors":"Shipeng Yu, Kai Yu, Volker Tresp, H. Kriegel","doi":"10.1145/1143844.1143981","DOIUrl":null,"url":null,"abstract":"Ordinal regression has become an effective way of learning user preferences, but most research focuses on single regression problems. In this paper we introduce collaborative ordinal regression, where multiple ordinal regression tasks are handled simultaneously. Rather than modeling each task individually, we explore the dependency between ranking functions through a hierarchical Bayesian model and assign a common Gaussian Process (GP) prior to all individual functions. Empirical studies show that our collaborative model outperforms the individual counterpart in preference learning applications.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

Ordinal regression has become an effective way of learning user preferences, but most research focuses on single regression problems. In this paper we introduce collaborative ordinal regression, where multiple ordinal regression tasks are handled simultaneously. Rather than modeling each task individually, we explore the dependency between ranking functions through a hierarchical Bayesian model and assign a common Gaussian Process (GP) prior to all individual functions. Empirical studies show that our collaborative model outperforms the individual counterpart in preference learning applications.
协同有序回归
有序回归已经成为学习用户偏好的一种有效方法,但大多数研究都集中在单一回归问题上。在本文中,我们引入了协同有序回归,其中多个有序回归任务同时处理。我们不是单独对每个任务建模,而是通过分层贝叶斯模型探索排序函数之间的依赖关系,并在所有单个函数之前分配一个共同的高斯过程(GP)。实证研究表明,我们的协作模型在偏好学习应用中优于个体模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信