A Bayesian network framework for relational shape matching

Anand Rangarajan, J. Coughlan, A. Yuille
{"title":"A Bayesian network framework for relational shape matching","authors":"Anand Rangarajan, J. Coughlan, A. Yuille","doi":"10.1109/ICCV.2003.1238412","DOIUrl":null,"url":null,"abstract":"A Bayesian network formulation for relational shape matching is presented. The main advantage of the relational shape matching approach is the obviation of the nonrigid spatial mappings used by recent nonrigid matching approaches. The basic variables that need to be estimated in the relational shape matching objective function are the global rotation and scale and the local displacements and correspondences. The new Bethe free energy approach is used to estimate the pairwise correspondences between links of the template graphs and the data. The resulting framework is useful in both registration and recognition contexts. Results are shown on hand-drawn templates and on 2D transverse T1-weighted MR images.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

A Bayesian network formulation for relational shape matching is presented. The main advantage of the relational shape matching approach is the obviation of the nonrigid spatial mappings used by recent nonrigid matching approaches. The basic variables that need to be estimated in the relational shape matching objective function are the global rotation and scale and the local displacements and correspondences. The new Bethe free energy approach is used to estimate the pairwise correspondences between links of the template graphs and the data. The resulting framework is useful in both registration and recognition contexts. Results are shown on hand-drawn templates and on 2D transverse T1-weighted MR images.
关系形状匹配的贝叶斯网络框架
提出了一种关系形状匹配的贝叶斯网络公式。关系形状匹配方法的主要优点是避免了最近的非刚性匹配方法所使用的非刚性空间映射。在关系形状匹配目标函数中需要估计的基本变量是全局旋转和尺度以及局部位移和对应。采用新的贝特自由能方法估计模板图链接与数据的成对对应关系。得到的框架在注册和识别上下文中都很有用。结果显示在手绘模板和2D横向t1加权MR图像上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信