Linguistically independent sentiment analysis using convolutional-recurrent neural networks model

Vojtech Myska, Radim Burget, Lukas Povoda, M. Dutta
{"title":"Linguistically independent sentiment analysis using convolutional-recurrent neural networks model","authors":"Vojtech Myska, Radim Burget, Lukas Povoda, M. Dutta","doi":"10.1109/TSP.2019.8768887","DOIUrl":null,"url":null,"abstract":"Text classification is a process which analyses text and assigns one or more classes to it based on its content. This paper introduces a linguistically independent text classifier based on convolutional–recurrent neural networks. The classifier works at character level instead of some higher structures such as words, sentences, etc. To evaluate the accuracy of the proposed methodology, the Yelp data set and other multilingual data set obtained from film review databases containing Czech, German and Spanish languages were used. The resulting accuracy on the Yelp data set is 93,64%. We also proved that the proposed model can work for various languages.","PeriodicalId":399087,"journal":{"name":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 42nd International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2019.8768887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Text classification is a process which analyses text and assigns one or more classes to it based on its content. This paper introduces a linguistically independent text classifier based on convolutional–recurrent neural networks. The classifier works at character level instead of some higher structures such as words, sentences, etc. To evaluate the accuracy of the proposed methodology, the Yelp data set and other multilingual data set obtained from film review databases containing Czech, German and Spanish languages were used. The resulting accuracy on the Yelp data set is 93,64%. We also proved that the proposed model can work for various languages.
基于卷积-递归神经网络模型的语言独立情感分析
文本分类是对文本进行分析并根据其内容为其分配一个或多个类的过程。介绍了一种基于卷积递归神经网络的语言无关文本分类器。分类器工作在字符级别,而不是一些更高的结构,如单词,句子等。为了评估所提出方法的准确性,使用了Yelp数据集和其他多语言数据集,这些数据集来自包含捷克语、德语和西班牙语的电影评论数据库。结果在Yelp数据集上的准确率为93.64%。我们还证明了所提出的模型可以适用于各种语言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信