FaBULOUS: Fact-checking Based on Understanding of Language Over Unstructured and Structured information

Mostafa Bouziane, Hugo Perrin, Amine Sadeq, Thanh-Tung Nguyen, Aurélien Cluzeau, Julien Mardas
{"title":"FaBULOUS: Fact-checking Based on Understanding of Language Over Unstructured and Structured information","authors":"Mostafa Bouziane, Hugo Perrin, Amine Sadeq, Thanh-Tung Nguyen, Aurélien Cluzeau, Julien Mardas","doi":"10.18653/v1/2021.fever-1.4","DOIUrl":null,"url":null,"abstract":"As part of the FEVEROUS shared task, we developed a robust and finely tuned architecture to handle the joint retrieval and entailment on text data as well as structured data like tables. We proposed two training schemes to tackle the hurdles inherent to multi-hop multi-modal datasets. The first one allows having a robust retrieval of full evidence sets, while the second one enables entailment to take full advantage of noisy evidence inputs. In addition, our work has revealed important insights and potential avenue of research for future improvement on this kind of dataset. In preliminary evaluation on the FEVEROUS shared task test set, our system achieves 0.271 FEVEROUS score, with 0.4258 evidence recall and 0.5607 entailment accuracy.","PeriodicalId":417162,"journal":{"name":"Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Workshop on Fact Extraction and VERification (FEVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.fever-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

As part of the FEVEROUS shared task, we developed a robust and finely tuned architecture to handle the joint retrieval and entailment on text data as well as structured data like tables. We proposed two training schemes to tackle the hurdles inherent to multi-hop multi-modal datasets. The first one allows having a robust retrieval of full evidence sets, while the second one enables entailment to take full advantage of noisy evidence inputs. In addition, our work has revealed important insights and potential avenue of research for future improvement on this kind of dataset. In preliminary evaluation on the FEVEROUS shared task test set, our system achieves 0.271 FEVEROUS score, with 0.4258 evidence recall and 0.5607 entailment accuracy.
神话:基于对非结构化和结构化信息的语言理解的事实核查
作为FEVEROUS共享任务的一部分,我们开发了一个健壮且经过精细调整的架构来处理文本数据以及表等结构化数据的联合检索和隐含。我们提出了两种训练方案来解决多跳多模态数据集固有的障碍。第一种方法允许对完整的证据集进行鲁棒检索,而第二种方法使蕴涵能够充分利用嘈杂的证据输入。此外,我们的工作还揭示了对这类数据集的未来改进的重要见解和潜在研究途径。在对FEVEROUS共享任务测试集的初步评估中,我们的系统达到了0.271 FEVEROUS评分,证据召回率为0.4258,蕴意准确率为0.5607。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信