Ranking User Tags in Micro-Blogging Website

Xiang Wang, Yan Jia, R. Chen, Bin Zhou
{"title":"Ranking User Tags in Micro-Blogging Website","authors":"Xiang Wang, Yan Jia, R. Chen, Bin Zhou","doi":"10.1109/ICISCE.2015.94","DOIUrl":null,"url":null,"abstract":"Users can annotate themselves using free tags in micro-blogging website such as Sina Weibo. The tags of a user demonstrate the characteristics of the user and are generally in a random order without any importance or relevance information. It limits the effectiveness of user tags in system recommendation and other applications. In this paper, we proposed a user tag ranking schema which is based on interactive relations between users. Influence strength between users is considered in our user tag ranking method. Relevance scores between tags and users are also utilized to rank user tags. Experiments are conducted on distributed processing framework Hadoop to process the very large Sina Weibo dataset which contains more than 140 million users. Experimental results show that our method outputs frequently used method and gives good performance.","PeriodicalId":356250,"journal":{"name":"2015 2nd International Conference on Information Science and Control Engineering","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 2nd International Conference on Information Science and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCE.2015.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Users can annotate themselves using free tags in micro-blogging website such as Sina Weibo. The tags of a user demonstrate the characteristics of the user and are generally in a random order without any importance or relevance information. It limits the effectiveness of user tags in system recommendation and other applications. In this paper, we proposed a user tag ranking schema which is based on interactive relations between users. Influence strength between users is considered in our user tag ranking method. Relevance scores between tags and users are also utilized to rank user tags. Experiments are conducted on distributed processing framework Hadoop to process the very large Sina Weibo dataset which contains more than 140 million users. Experimental results show that our method outputs frequently used method and gives good performance.
微博网站用户标签排名
用户可以在新浪微博等微博网站上使用免费标签为自己注释。用户的标签展示了用户的特征,通常是随机排列的,没有任何重要性或相关性信息。它限制了用户标签在系统推荐和其他应用中的有效性。本文提出了一种基于用户交互关系的用户标签排序模式。我们的用户标签排序方法考虑了用户之间的影响强度。标签和用户之间的相关性分数也用于对用户标签进行排名。在分布式处理框架Hadoop上进行实验,处理包含超过1.4亿用户的超大新浪微博数据集。实验结果表明,该方法输出了常用的方法,具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信