{"title":"Pursuit and Evasion from a Distance: Algorithms and Bounds","authors":"A. Bonato, E. Chiniforooshan","doi":"10.1137/1.9781611972993.1","DOIUrl":null,"url":null,"abstract":"Cops and Robber is a pursuit and evasion game played on graphs that has received much attention. We consider an extension of Cops and Robber, distance k Cops and Robber, where the cops win if they are distance at most k from the robber in G. The cop number of a graph G is the minimum number of cops needed to capture the robber in G. The distance k analogue of the cop number, written ck(G), equals the minimum number of cops needed to win at a given distance k. We supply a classification result for graphs with bounded ck(G) values and develop an O(n2s+3) algorithm for determining if ck(G) ≤ s. In the case k = 0, our algorithm is faster than previously known algorithms. Upper and lower bounds are found for ck(G) in terms of the order of G. We prove that \n \n[EQUATION] \n \nwhere ck(n) is the maximum of ck(G) over all n-node connected graphs.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611972993.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Cops and Robber is a pursuit and evasion game played on graphs that has received much attention. We consider an extension of Cops and Robber, distance k Cops and Robber, where the cops win if they are distance at most k from the robber in G. The cop number of a graph G is the minimum number of cops needed to capture the robber in G. The distance k analogue of the cop number, written ck(G), equals the minimum number of cops needed to win at a given distance k. We supply a classification result for graphs with bounded ck(G) values and develop an O(n2s+3) algorithm for determining if ck(G) ≤ s. In the case k = 0, our algorithm is faster than previously known algorithms. Upper and lower bounds are found for ck(G) in terms of the order of G. We prove that
[EQUATION]
where ck(n) is the maximum of ck(G) over all n-node connected graphs.