Visual words selection based on class separation measures

Przemyslaw Górecki, Piotr Artiemjew, Paweł Drozda, Krzysztof Sopyla
{"title":"Visual words selection based on class separation measures","authors":"Przemyslaw Górecki, Piotr Artiemjew, Paweł Drozda, Krzysztof Sopyla","doi":"10.1109/ICCI-CC.2013.6622275","DOIUrl":null,"url":null,"abstract":"Bag of Visual Words is one of the most effective image representations. One of the optimization methods for BoVW is the selection of the most informative visual words, which leads to more compact visual dictionaries and more accurate categorization. In this paper we investigate the problem of feature selection in the Bag of Visual Words framework. The main contribution is the presentation of two novel methods for visual word selection. The first one choses the features which are the best at separating one class from the rest (MFM1 one-vs-all). In the second method, the features which are the best at separating class pairs are selected (MSF6 one-vs-one). The effectiveness of the proposed methods is verified empirically on two different image datasets.","PeriodicalId":130244,"journal":{"name":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2013.6622275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Bag of Visual Words is one of the most effective image representations. One of the optimization methods for BoVW is the selection of the most informative visual words, which leads to more compact visual dictionaries and more accurate categorization. In this paper we investigate the problem of feature selection in the Bag of Visual Words framework. The main contribution is the presentation of two novel methods for visual word selection. The first one choses the features which are the best at separating one class from the rest (MFM1 one-vs-all). In the second method, the features which are the best at separating class pairs are selected (MSF6 one-vs-one). The effectiveness of the proposed methods is verified empirically on two different image datasets.
基于分类措施的视觉词选择
视觉词袋是最有效的图像表征之一。BoVW的优化方法之一是选择信息量最大的视觉词,从而使视觉词典更紧凑,分类更准确。本文研究了视觉词袋框架中的特征选择问题。主要贡献是提出了两种新的视觉选词方法。第一个选择最能将一个类从其他类中分离出来的特性(MFM1一对一)。在第二种方法中,选择最适合分离类对的特征(MSF6 1 -vs- 1)。在两个不同的图像数据集上验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信