Super-resolution Reconstruction for Binocular 3D Data

Wei-Tsung Hsiao, Jin-Jang Leou, H. Hsiao
{"title":"Super-resolution Reconstruction for Binocular 3D Data","authors":"Wei-Tsung Hsiao, Jin-Jang Leou, H. Hsiao","doi":"10.1109/ICPR.2014.721","DOIUrl":null,"url":null,"abstract":"In this study, a super-resolution reconstruction approach for binocular 3D data is proposed. The aim is to obtain the high-resolution (HR) disparity map from a low-resolution (LR) binocular image pair by super-resolution reconstruction. The proposed approach contains five stages, i.e., initial disparity map estimation using local aggregation, disparity plane model computation, global energy cost minimization, HR disparity map composition by region-based fusion (selection), and fused HR disparity map refinement. Based on the experimental results obtained in this study, in terms of PSNR and bad pixel rate (BPR), the final HR disparity maps by the proposed approach are better than those by four comparison approaches.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, a super-resolution reconstruction approach for binocular 3D data is proposed. The aim is to obtain the high-resolution (HR) disparity map from a low-resolution (LR) binocular image pair by super-resolution reconstruction. The proposed approach contains five stages, i.e., initial disparity map estimation using local aggregation, disparity plane model computation, global energy cost minimization, HR disparity map composition by region-based fusion (selection), and fused HR disparity map refinement. Based on the experimental results obtained in this study, in terms of PSNR and bad pixel rate (BPR), the final HR disparity maps by the proposed approach are better than those by four comparison approaches.
双目三维数据的超分辨率重建
本研究提出了一种双目三维数据的超分辨率重建方法。目的是通过超分辨率重建,从低分辨率双目图像对获得高分辨率视差图。该方法包含5个阶段,即利用局部聚合估计初始视差图、视差平面模型计算、全局能量成本最小化、基于区域的融合(选择)合成人力资源视差图、融合人力资源视差图细化。从本研究的实验结果来看,在PSNR和bad pixel rate (BPR)方面,本文方法最终得到的HR视差图优于4种比较方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信