H. Ahmed, Muhammad Affan Alim, Waleej Haider, Muhammad Nadeem, Ahsan Masroor, Nadeem Qamar
{"title":"Diabetes Diagnosis through Machine Learning: An Analysis of Classification Algorithms","authors":"H. Ahmed, Muhammad Affan Alim, Waleej Haider, Muhammad Nadeem, Ahsan Masroor, Nadeem Qamar","doi":"10.54692/lgurjcsit.2023.0701411","DOIUrl":null,"url":null,"abstract":"Diabetes is a serious and chronic disease characterized by high levels of sugar in the blood. If left untreated, it can lead to numerous complications. In the past, diagnosing diabetes required a visit to a diagnostic center and consultation with a doctor. However, the use of machine learning can help to identify the disease earlier and more accurately. This study aimed to create a model that can accurately predict the likelihood of diabetes in patients using three machine learning classification algorithms: Logistic Regression (LR), Decision Tree (DT), and Naive Bayes (NB). The model was tested on the Pima Indians Diabetes Database (PIDD) from the UCI machine learning repository and the performance of the algorithms was evaluated using various metrics such as accuracy, precision, F-measure, and recall. The results showed that Logistic Regression had the highest accuracy at 71.39% outperforming the other algorithms.","PeriodicalId":197260,"journal":{"name":"Lahore Garrison University Research Journal of Computer Science and Information Technology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lahore Garrison University Research Journal of Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54692/lgurjcsit.2023.0701411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes is a serious and chronic disease characterized by high levels of sugar in the blood. If left untreated, it can lead to numerous complications. In the past, diagnosing diabetes required a visit to a diagnostic center and consultation with a doctor. However, the use of machine learning can help to identify the disease earlier and more accurately. This study aimed to create a model that can accurately predict the likelihood of diabetes in patients using three machine learning classification algorithms: Logistic Regression (LR), Decision Tree (DT), and Naive Bayes (NB). The model was tested on the Pima Indians Diabetes Database (PIDD) from the UCI machine learning repository and the performance of the algorithms was evaluated using various metrics such as accuracy, precision, F-measure, and recall. The results showed that Logistic Regression had the highest accuracy at 71.39% outperforming the other algorithms.