Spatio-Temporal Partitioning of Large Urban Networks for Travel Time Prediction

Matej Cebecauer, E. Jenelius, W. Burghout
{"title":"Spatio-Temporal Partitioning of Large Urban Networks for Travel Time Prediction","authors":"Matej Cebecauer, E. Jenelius, W. Burghout","doi":"10.1109/ITSC.2018.8569648","DOIUrl":null,"url":null,"abstract":"The paper explores the potential of spatiotemporal network partitioning for travel time prediction accuracy and computational costs in the context of large-scale urban road networks (including motorways/freeways, arterials and urban streets). Forecasting in this context is challenging due to the complexity, heterogeneity, noisy data, unexpected events and the size of the traffic network. The proposed spatio-temporal network partitioning methodology is versatile, and can be applied for any source of travel time data and multivariate travel time prediction method. A case study of Stockholm, Sweden considers a network exceeding 11,000 links and uses taxi probe data as the source of travel times data. To predict the travel times the Probabilistic Principal Component Analysis (PPCA) is used. Results show that the spatio-temporal network partitioning provides a more appropriate bias-variance tradeoff, and that prediction accuracy and computational costs are improved by considering the proper number of clusters towards robust large-scale travel time prediction.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper explores the potential of spatiotemporal network partitioning for travel time prediction accuracy and computational costs in the context of large-scale urban road networks (including motorways/freeways, arterials and urban streets). Forecasting in this context is challenging due to the complexity, heterogeneity, noisy data, unexpected events and the size of the traffic network. The proposed spatio-temporal network partitioning methodology is versatile, and can be applied for any source of travel time data and multivariate travel time prediction method. A case study of Stockholm, Sweden considers a network exceeding 11,000 links and uses taxi probe data as the source of travel times data. To predict the travel times the Probabilistic Principal Component Analysis (PPCA) is used. Results show that the spatio-temporal network partitioning provides a more appropriate bias-variance tradeoff, and that prediction accuracy and computational costs are improved by considering the proper number of clusters towards robust large-scale travel time prediction.
基于时空划分的大型城市交通网络出行时间预测
本文探讨了在大规模城市道路网络(包括高速公路/高速公路、主干道和城市街道)背景下,时空网络划分在旅行时间预测精度和计算成本方面的潜力。由于交通网络的复杂性、异质性、噪声数据、意外事件和规模,在这种情况下进行预测是具有挑战性的。提出的时空网络划分方法具有通用性,可适用于任何旅行时间数据源和多元旅行时间预测方法。瑞典斯德哥尔摩的一个案例研究考虑了一个超过11,000个链接的网络,并使用出租车探测数据作为旅行时间数据的来源。运用概率主成分分析(PPCA)对列车行驶时间进行预测。结果表明,时空网络划分提供了更合适的偏方差权衡,并且通过考虑适当的簇数来实现稳健的大尺度旅行时间预测,提高了预测精度和计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信