Discrete Deep Learning for Fast Content-Aware Recommendation

Yan Zhang, Hongzhi Yin, Zi Huang, Xingzhong Du, Guowu Yang, Defu Lian
{"title":"Discrete Deep Learning for Fast Content-Aware Recommendation","authors":"Yan Zhang, Hongzhi Yin, Zi Huang, Xingzhong Du, Guowu Yang, Defu Lian","doi":"10.1145/3159652.3159688","DOIUrl":null,"url":null,"abstract":"Cold-start problem and recommendation efficiency have been regarded as two crucial challenges in the recommender system. In this paper, we propose a hashing based deep learning framework called Discrete Deep Learning (DDL), to map users and items to Hamming space, where a user»s preference for an item can be efficiently calculated by Hamming distance, and this computation scheme significantly improves the efficiency of online recommendation. Besides, DDL unifies the user-item interaction information and the item content information to overcome the issues of data sparsity and cold-start. To be more specific, to integrate content information into our DDL framework, a deep learning model, Deep Belief Network (DBN), is applied to extract effective item representation from the item content information. Besides, the framework imposes balance and irrelevant constraints on binary codes to derive compact but informative binary codes. Due to the discrete constraints in DDL, we propose an efficient alternating optimization method consisting of iteratively solving a series of mixed-integer programming subproblems. Extensive experiments have been conducted to evaluate the performance of our DDL framework on two different Amazon datasets, and the experimental results demonstrate the superiority of DDL over the state-of-the-art methods regarding online recommendation efficiency and cold-start recommendation accuracy.","PeriodicalId":401247,"journal":{"name":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3159652.3159688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

Cold-start problem and recommendation efficiency have been regarded as two crucial challenges in the recommender system. In this paper, we propose a hashing based deep learning framework called Discrete Deep Learning (DDL), to map users and items to Hamming space, where a user»s preference for an item can be efficiently calculated by Hamming distance, and this computation scheme significantly improves the efficiency of online recommendation. Besides, DDL unifies the user-item interaction information and the item content information to overcome the issues of data sparsity and cold-start. To be more specific, to integrate content information into our DDL framework, a deep learning model, Deep Belief Network (DBN), is applied to extract effective item representation from the item content information. Besides, the framework imposes balance and irrelevant constraints on binary codes to derive compact but informative binary codes. Due to the discrete constraints in DDL, we propose an efficient alternating optimization method consisting of iteratively solving a series of mixed-integer programming subproblems. Extensive experiments have been conducted to evaluate the performance of our DDL framework on two different Amazon datasets, and the experimental results demonstrate the superiority of DDL over the state-of-the-art methods regarding online recommendation efficiency and cold-start recommendation accuracy.
用于快速内容感知推荐的离散深度学习
冷启动问题和推荐效率一直是推荐系统面临的两个关键挑战。本文提出了一种基于哈希的深度学习框架,称为离散深度学习(DDL),将用户和物品映射到汉明空间,其中用户对物品的偏好可以通过汉明距离有效地计算出来,该计算方案显著提高了在线推荐的效率。DDL统一了用户-物品交互信息和物品内容信息,克服了数据稀疏和冷启动的问题。更具体地说,为了将内容信息集成到我们的DDL框架中,我们使用了深度学习模型——深度信念网络(deep Belief Network, DBN),从项目内容信息中提取有效的项目表示。此外,该框架对二进制码施加平衡和不相关的约束,以获得紧凑但信息丰富的二进制码。针对DDL中的离散约束,提出了一种由迭代求解一系列混合整数规划子问题组成的高效交替优化方法。我们进行了大量的实验来评估我们的DDL框架在两个不同的Amazon数据集上的性能,实验结果表明DDL在在线推荐效率和冷启动推荐精度方面优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信