Robust Real-Time Extreme Head Pose Estimation

S. Tulyakov, R. Vieriu, Stanislau Semeniuta, N. Sebe
{"title":"Robust Real-Time Extreme Head Pose Estimation","authors":"S. Tulyakov, R. Vieriu, Stanislau Semeniuta, N. Sebe","doi":"10.1109/ICPR.2014.393","DOIUrl":null,"url":null,"abstract":"This paper proposes a new framework for head pose estimation under extreme pose variations. By augmenting the precision of a template matching based tracking module with the ability to recover offered by a frame-by-frame head pose estimator, we are able to address pose ranges for which face features are no longer visible, while maintaining state-of-the-art performance. Experimental results obtained on a newly acquired 3D extreme head pose dataset support the proposed method and open new perspectives in approaching real-life unconstrained scenarios.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

This paper proposes a new framework for head pose estimation under extreme pose variations. By augmenting the precision of a template matching based tracking module with the ability to recover offered by a frame-by-frame head pose estimator, we are able to address pose ranges for which face features are no longer visible, while maintaining state-of-the-art performance. Experimental results obtained on a newly acquired 3D extreme head pose dataset support the proposed method and open new perspectives in approaching real-life unconstrained scenarios.
鲁棒实时极端头部姿态估计
提出了一种极端姿态变化下头部姿态估计的新框架。通过提高基于模板匹配的跟踪模块的精度,以及由一帧一帧的头部姿态估计器提供的恢复能力,我们能够解决面部特征不再可见的姿态范围,同时保持最先进的性能。在新获得的三维极端头部姿态数据集上获得的实验结果支持了所提出的方法,并为接近现实生活中的无约束场景开辟了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信