Quantum particle swarm optimization for multiobjective combined economic emission dispatch problem using cubic criterion function

Fahad Parvez Mahdi, P. Vasant, M. Rahman, M. Abdullah-Al-Wadud, J. Watada, V. Kallimani
{"title":"Quantum particle swarm optimization for multiobjective combined economic emission dispatch problem using cubic criterion function","authors":"Fahad Parvez Mahdi, P. Vasant, M. Rahman, M. Abdullah-Al-Wadud, J. Watada, V. Kallimani","doi":"10.1109/ICIVPR.2017.7890879","DOIUrl":null,"url":null,"abstract":"In this research, quantum particle swarm optimization (QPSO) is utilized to solve multiobjective combined economic emission dispatch (CEED) problem formulated using cubic criterion function considering a uni wise max/max price penalty factor. QPSO is implemented on a 6-unit power generation system and compared with Lagrangian relaxation, particle swarm optimization (PSO) and simulated annealing (SA). The obtained results verified the effectiveness and demonstrate the robustness of QPSO method. This research suggests that QPSO can be used as an effective and robust tool in other power dispatch problems.","PeriodicalId":126745,"journal":{"name":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVPR.2017.7890879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this research, quantum particle swarm optimization (QPSO) is utilized to solve multiobjective combined economic emission dispatch (CEED) problem formulated using cubic criterion function considering a uni wise max/max price penalty factor. QPSO is implemented on a 6-unit power generation system and compared with Lagrangian relaxation, particle swarm optimization (PSO) and simulated annealing (SA). The obtained results verified the effectiveness and demonstrate the robustness of QPSO method. This research suggests that QPSO can be used as an effective and robust tool in other power dispatch problems.
基于三次准则函数的多目标组合经济排放调度问题的量子粒子群优化
本文采用量子粒子群算法求解考虑单最大/最大价格惩罚因子的三次准则函数多目标联合经济排放调度问题。在6台发电系统上实现了量子粒子群优化算法,并与拉格朗日弛豫、粒子群优化和模拟退火算法进行了比较。得到的结果验证了QPSO方法的有效性和鲁棒性。这一研究表明,量子粒子群算法可以作为一种有效的鲁棒工具用于解决其他电力调度问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信