{"title":"Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)","authors":"","doi":"10.1109/isgteurope.2019.8905614","DOIUrl":null,"url":null,"abstract":"grids designing, managing operating qualitatively new complex socio-technical technical perspective, solutions to limited ability to predict stochastic generation demand in communications, control Abstract. A global sustainable energy system can be realised with predominantly solar and wind as energy source, converted into electricity via solar panels and wind turbines. Where possible, useful and cost effective, the electricity produced is directly used. However, lowest cost solar and wind electricity can be produced far away from the demand, requiring conversion to hydrogen by electrolysis for cheap transport and storage. The lower electricity production cost and cheaper transport and storage cost will compensate for extra energy conversion losses and costs. The hydrogen can be transported in large quantities worldwide by ship or by pipelines and stored in the underground in salt caverns. Volumes and capacities for hydrogen transport and storage are orders of magnitude larger than for electricity. Today, the conversion process to convert hydrogen in heat, electricity or mechanical power is via combustion. However, in future electrochemical conversion via fuel cells will become more important. Fuel cells for mobility, in buildings for power and heat, and for electricity balancing. In the end electrochemical conversion using electrolysers and fuel cells together with heat pump technology will fully replace combustion technologies. A smart integration of electricity and hydrogen systems using electrochemical conversion and heat pump technology can deliver energy demand in all sectors, clean, reliable and affordable. Electricity and hydrogen will be the carbon-free symbiotic energy carriers and smart grids needs to integrate both. Abstract. The term smart grid has been around for well over a decade, yet AI and machine learning are now enabling humans to make smarter decisions in managing the power grid. Augmenting humans with digital enhanced cognitive functions such as sight, touch and hearing, all workflows are being re-imagined to increase grid capacity, worker safety and customer experience: How can a machine learning ‘grid model’ help TSO-operators spot the risks and grid operating limits? How can vegetation growth models, satellite images and accurate weather prediction send crews out to the right place and time to cut tree branches before interfering with power lines? And how can visual recognition, augmented reality and speech recognition help field workers do their jobs safely, efficiently and with a higher job satisfaction? These elements come together in what IBM calls ‘The Cognitive Enterprise’, or in this case 'The Cognitive Grid Enterprise'. Abstract. The electric power utilities are transitioning towards a Smart Grid as a result of the changes in the industry driven by the developments of computer and communication technologies, as well as the increasing penetration of renewable distributed energy resources. The presentation describes the characteristics of the smart grid and the need for digitization in order to meet the requirements of the different applications. It briefly introduces the key components of the IEC 61850 standard and the extensions that are developed to cover the requirements of different domains outside of the substation. It describes the non-conventional sensors that are becoming key components of the digital substations and looks at different architectures, such as distributed, centralized or hybrid systems. Engineering of the digital substations based on the IEC 61850 SCL (system configuration language) is later described. The benefits of the digital grid and its impact on the maintenance and testing of the electric power system are described at the end of the presentation. Abstract: Urban environments are characterized by a high density of energy consumption, and tight constraints on local development (including network infrastructure). The implication is that while initiating the energy transition in urban environments cannot be postponed, the transition pathways must continuously adapt to local conditions and future developments. Against this background, it is essential to unlock the flexibility offered by energy consumers in close proximity, and across different energy vectors, making use of the additional flexibility offered by local sources of energy (prosumers) and the proliferation of IoT-enabled devices. This session brings together panelists that address this challenge from technical, regulatory and socio-economic perspectives. They will present and discuss the potential benefits of unlocking prosumer flexibility, and how these can be achieved in ways that are feasible, fair and resilient. Abstract: Local markets for electricity are gaining interest from academic and industrial researchers alike. At the level of the transmission networks and wholesale electricity markets, locational aspects have been included in the market clearing procedure for decades now. Currently, one of the energy transition challenges is to develop local market mechanisms for the distribution level of the electricity system. These mechanisms should be (1) fair, transparent and posing the right incentives to all stakeholders, (2) scalable, robust, increasing resiliency, and (3) connecting to the wholesale markets such that local and global stakes are balanced. Abstract: The term \"digital twin\" is hot: An established method in avionics or automotive industry now enters new sectors, power systems being one of them. A digital twin represents some real (cyber/physical/social) system in a digital fashion. It can represent the past (forensics, analytics), the present (dashboard), or the future (predictive controls or maintenance, scenario optimization). Depending on the depth of the used models, it can give insights into hidden dynamics, risks, and optima. There are many situations and locations in the power system where digital twins can help: as decision support in the control room, embedded in a substation controller, as a planning tool, or on markets. This panel invites a group of experts, both from research and practice to confront the audience with the bare facts on digital twins in order to discuss their use and limits for power systems and smart grids. The panelists will pitch their propositions as thesis and antithesis, the audience will vote on that. After an interactive discussion with the audience, the vote is repeated, assessed, and summarized. Abstract: In this panel, the lessons learned so far from the EMPOWER project will be discussed by speakers that forms a blend of academia and industry. In particular, Abstract: Flexibility can be defined as the ability of the power system to adapt to variations of the demand, the generation and the grid. New challenges are arising like the increasing penetration of RES but new solutions are also emerging like smarter controls or large scale storage. The OSMOSE H2020 project (2018-2021) aims at enhancing the flexibility of the European power system especially through four large scale demonstrators lead by Transmission System operators: RTE, REE, TERNA and ELES. These demonstrations covers various innovations on flexibility services and providers: grid forming, multi-services by hybrid storage, near real-time cross border exchanges, smart zonal energy management system. Each demo will present in 15 minutes its objectives and current status. A roundtable will be the occasion to discuss with the audience the following questions: Abstract: For large-scale integration of renewable energy, power systems must provide abundant flexibility to accommodate high shares of variable and uncertain renewable resources. Electrification is also becoming the most promising option to bring renewable energy to other sectors, thus greatly increasing (unconventional) electric demand, which poses new challenges and opportunities to the power system. In this panel session, we present different flexibility sources, their modelling and economic challenges for optimal planning and operation of power systems. These flexibility options include demand response, storage, and flexible sector coupling, e.g., power2gas (H2), power2mobility (EVs), and power2heat. Abstract: Although power-electronics interfaced Distributed Renewable Energy Sources (PEI-DRES) are highly proliferated at distribution systems, their intermittent and inertia-less nature still prohibits the overall decommission of bulk synchronous generators (SGs), whose inherent properties are the basis of robust and stable transmission systems. Towards this direction, the increased controllability of PEI-DRES should be exploited so as they can provide Ancillary Services (AS) similarly to SGs. This panel session will provide a further insight on this topic through the ongoing research in the H2020 EU project EASY-RES. Abstract: Real-time simulation and hardware-in-the-loop (HIL) testing has been used in the power industry for over twenty-five years. Originally developed as a solution for flexibly testing the control and protection associated with HVDC projects, the application of the technology is now widespread and varied, and today real-time simulators are used particularly effectively in the smart grid technologies space. The devices associated with and required by smart grids have the potential to interact with each other and with existing technologies, and given the fast-acting nature of modern control and protection systems, the tools required to study them in detail must be capable of representing subcycle phenomena. Real-time simulators offer an electromagnetic transient representation of the power system along with the ability to connect devices in a closed-loop with the simulated network for flexible, controlled, and safe testing prior to deployment. This panel session highlights recent exciting projects from real-time simulator users validating and de-risking enabling technologies for a smarter, more sustainabl","PeriodicalId":305933,"journal":{"name":"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/isgteurope.2019.8905614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
grids designing, managing operating qualitatively new complex socio-technical technical perspective, solutions to limited ability to predict stochastic generation demand in communications, control Abstract. A global sustainable energy system can be realised with predominantly solar and wind as energy source, converted into electricity via solar panels and wind turbines. Where possible, useful and cost effective, the electricity produced is directly used. However, lowest cost solar and wind electricity can be produced far away from the demand, requiring conversion to hydrogen by electrolysis for cheap transport and storage. The lower electricity production cost and cheaper transport and storage cost will compensate for extra energy conversion losses and costs. The hydrogen can be transported in large quantities worldwide by ship or by pipelines and stored in the underground in salt caverns. Volumes and capacities for hydrogen transport and storage are orders of magnitude larger than for electricity. Today, the conversion process to convert hydrogen in heat, electricity or mechanical power is via combustion. However, in future electrochemical conversion via fuel cells will become more important. Fuel cells for mobility, in buildings for power and heat, and for electricity balancing. In the end electrochemical conversion using electrolysers and fuel cells together with heat pump technology will fully replace combustion technologies. A smart integration of electricity and hydrogen systems using electrochemical conversion and heat pump technology can deliver energy demand in all sectors, clean, reliable and affordable. Electricity and hydrogen will be the carbon-free symbiotic energy carriers and smart grids needs to integrate both. Abstract. The term smart grid has been around for well over a decade, yet AI and machine learning are now enabling humans to make smarter decisions in managing the power grid. Augmenting humans with digital enhanced cognitive functions such as sight, touch and hearing, all workflows are being re-imagined to increase grid capacity, worker safety and customer experience: How can a machine learning ‘grid model’ help TSO-operators spot the risks and grid operating limits? How can vegetation growth models, satellite images and accurate weather prediction send crews out to the right place and time to cut tree branches before interfering with power lines? And how can visual recognition, augmented reality and speech recognition help field workers do their jobs safely, efficiently and with a higher job satisfaction? These elements come together in what IBM calls ‘The Cognitive Enterprise’, or in this case 'The Cognitive Grid Enterprise'. Abstract. The electric power utilities are transitioning towards a Smart Grid as a result of the changes in the industry driven by the developments of computer and communication technologies, as well as the increasing penetration of renewable distributed energy resources. The presentation describes the characteristics of the smart grid and the need for digitization in order to meet the requirements of the different applications. It briefly introduces the key components of the IEC 61850 standard and the extensions that are developed to cover the requirements of different domains outside of the substation. It describes the non-conventional sensors that are becoming key components of the digital substations and looks at different architectures, such as distributed, centralized or hybrid systems. Engineering of the digital substations based on the IEC 61850 SCL (system configuration language) is later described. The benefits of the digital grid and its impact on the maintenance and testing of the electric power system are described at the end of the presentation. Abstract: Urban environments are characterized by a high density of energy consumption, and tight constraints on local development (including network infrastructure). The implication is that while initiating the energy transition in urban environments cannot be postponed, the transition pathways must continuously adapt to local conditions and future developments. Against this background, it is essential to unlock the flexibility offered by energy consumers in close proximity, and across different energy vectors, making use of the additional flexibility offered by local sources of energy (prosumers) and the proliferation of IoT-enabled devices. This session brings together panelists that address this challenge from technical, regulatory and socio-economic perspectives. They will present and discuss the potential benefits of unlocking prosumer flexibility, and how these can be achieved in ways that are feasible, fair and resilient. Abstract: Local markets for electricity are gaining interest from academic and industrial researchers alike. At the level of the transmission networks and wholesale electricity markets, locational aspects have been included in the market clearing procedure for decades now. Currently, one of the energy transition challenges is to develop local market mechanisms for the distribution level of the electricity system. These mechanisms should be (1) fair, transparent and posing the right incentives to all stakeholders, (2) scalable, robust, increasing resiliency, and (3) connecting to the wholesale markets such that local and global stakes are balanced. Abstract: The term "digital twin" is hot: An established method in avionics or automotive industry now enters new sectors, power systems being one of them. A digital twin represents some real (cyber/physical/social) system in a digital fashion. It can represent the past (forensics, analytics), the present (dashboard), or the future (predictive controls or maintenance, scenario optimization). Depending on the depth of the used models, it can give insights into hidden dynamics, risks, and optima. There are many situations and locations in the power system where digital twins can help: as decision support in the control room, embedded in a substation controller, as a planning tool, or on markets. This panel invites a group of experts, both from research and practice to confront the audience with the bare facts on digital twins in order to discuss their use and limits for power systems and smart grids. The panelists will pitch their propositions as thesis and antithesis, the audience will vote on that. After an interactive discussion with the audience, the vote is repeated, assessed, and summarized. Abstract: In this panel, the lessons learned so far from the EMPOWER project will be discussed by speakers that forms a blend of academia and industry. In particular, Abstract: Flexibility can be defined as the ability of the power system to adapt to variations of the demand, the generation and the grid. New challenges are arising like the increasing penetration of RES but new solutions are also emerging like smarter controls or large scale storage. The OSMOSE H2020 project (2018-2021) aims at enhancing the flexibility of the European power system especially through four large scale demonstrators lead by Transmission System operators: RTE, REE, TERNA and ELES. These demonstrations covers various innovations on flexibility services and providers: grid forming, multi-services by hybrid storage, near real-time cross border exchanges, smart zonal energy management system. Each demo will present in 15 minutes its objectives and current status. A roundtable will be the occasion to discuss with the audience the following questions: Abstract: For large-scale integration of renewable energy, power systems must provide abundant flexibility to accommodate high shares of variable and uncertain renewable resources. Electrification is also becoming the most promising option to bring renewable energy to other sectors, thus greatly increasing (unconventional) electric demand, which poses new challenges and opportunities to the power system. In this panel session, we present different flexibility sources, their modelling and economic challenges for optimal planning and operation of power systems. These flexibility options include demand response, storage, and flexible sector coupling, e.g., power2gas (H2), power2mobility (EVs), and power2heat. Abstract: Although power-electronics interfaced Distributed Renewable Energy Sources (PEI-DRES) are highly proliferated at distribution systems, their intermittent and inertia-less nature still prohibits the overall decommission of bulk synchronous generators (SGs), whose inherent properties are the basis of robust and stable transmission systems. Towards this direction, the increased controllability of PEI-DRES should be exploited so as they can provide Ancillary Services (AS) similarly to SGs. This panel session will provide a further insight on this topic through the ongoing research in the H2020 EU project EASY-RES. Abstract: Real-time simulation and hardware-in-the-loop (HIL) testing has been used in the power industry for over twenty-five years. Originally developed as a solution for flexibly testing the control and protection associated with HVDC projects, the application of the technology is now widespread and varied, and today real-time simulators are used particularly effectively in the smart grid technologies space. The devices associated with and required by smart grids have the potential to interact with each other and with existing technologies, and given the fast-acting nature of modern control and protection systems, the tools required to study them in detail must be capable of representing subcycle phenomena. Real-time simulators offer an electromagnetic transient representation of the power system along with the ability to connect devices in a closed-loop with the simulated network for flexible, controlled, and safe testing prior to deployment. This panel session highlights recent exciting projects from real-time simulator users validating and de-risking enabling technologies for a smarter, more sustainabl