F. Hutter, H. Hoos, Kevin Leyton-Brown, Kevin P. Murphy
{"title":"An experimental investigation of model-based parameter optimisation: SPO and beyond","authors":"F. Hutter, H. Hoos, Kevin Leyton-Brown, Kevin P. Murphy","doi":"10.1145/1569901.1569940","DOIUrl":null,"url":null,"abstract":"This work experimentally investigates model-based approaches for optimising the performance of parameterised randomised algorithms. We restrict our attention to procedures based on Gaussian process models, the most widely-studied family of models for this problem. We evaluated two approaches from the literature, and found that sequential parameter optimisation (SPO) [4] offered the most robust performance. We then investigated key design decisions within the SPO paradigm, characterising the performance consequences of each. Based on these findings, we propose a new version of SPO, dubbed SPO+, which extends SPO with a novel intensification procedure and log-transformed response values. Finally, in a domain for which performance results for other (model-free) parameter optimisation approaches are available, we demonstrate that SPO+ achieves state-of-the-art performance.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103
Abstract
This work experimentally investigates model-based approaches for optimising the performance of parameterised randomised algorithms. We restrict our attention to procedures based on Gaussian process models, the most widely-studied family of models for this problem. We evaluated two approaches from the literature, and found that sequential parameter optimisation (SPO) [4] offered the most robust performance. We then investigated key design decisions within the SPO paradigm, characterising the performance consequences of each. Based on these findings, we propose a new version of SPO, dubbed SPO+, which extends SPO with a novel intensification procedure and log-transformed response values. Finally, in a domain for which performance results for other (model-free) parameter optimisation approaches are available, we demonstrate that SPO+ achieves state-of-the-art performance.