High-degree cubature joint probabilistic data association information filter for multiple sensor multiple target tracking

Bin Jia, M. Xin
{"title":"High-degree cubature joint probabilistic data association information filter for multiple sensor multiple target tracking","authors":"Bin Jia, M. Xin","doi":"10.1109/CDC.2014.7039398","DOIUrl":null,"url":null,"abstract":"In this paper, a new joint probabilistic data association information filter (JPDAIF) is proposed based on a high-degree cubature rule to improve the multiple sensor multiple target tracking performance. The cubature rule embedded JPDAIF can achieve more accurate estimation than that of joint probabilistic data association filters based on the linearization or unscented transformation. Simulation of tracking two maneuvering targets with two sensors is used to demonstrate the excellent performance of the proposed filter and compare it with several other conventional filters.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7039398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, a new joint probabilistic data association information filter (JPDAIF) is proposed based on a high-degree cubature rule to improve the multiple sensor multiple target tracking performance. The cubature rule embedded JPDAIF can achieve more accurate estimation than that of joint probabilistic data association filters based on the linearization or unscented transformation. Simulation of tracking two maneuvering targets with two sensors is used to demonstrate the excellent performance of the proposed filter and compare it with several other conventional filters.
面向多传感器多目标跟踪的高度时延联合概率数据关联信息滤波
为了提高多传感器多目标跟踪性能,提出了一种基于高度培养规则的联合概率数据关联信息滤波器(JPDAIF)。与基于线性化或无气味变换的联合概率数据关联滤波器相比,嵌入JPDAIF的培养规则可以获得更精确的估计。通过用两个传感器跟踪两个机动目标的仿真,验证了所提滤波器的优良性能,并与其他几种传统滤波器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信