D. Osintsev, V. Sverdlov, N. Neophytou, S. Selberherr
{"title":"Valley splitting and spin lifetime enhancement in strained thin silicon films","authors":"D. Osintsev, V. Sverdlov, N. Neophytou, S. Selberherr","doi":"10.1109/IWCE.2014.6865824","DOIUrl":null,"url":null,"abstract":"Spintronics attracts much attention because of the potential to build novel spin-based devices which are superior to nowadays charge-based microelectronic devices. Silicon, the main element of microelectronics, is promising for spin-driven applications. We investigate the surface roughness and electron-phonon limited spin relaxation in silicon films taking into account the coupling between the relevant valleys through the Γ-point. We demonstrate that applying uniaxial stress along the [110] direction considerably suppresses the spin relaxation.","PeriodicalId":168149,"journal":{"name":"2014 International Workshop on Computational Electronics (IWCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Workshop on Computational Electronics (IWCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.2014.6865824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Spintronics attracts much attention because of the potential to build novel spin-based devices which are superior to nowadays charge-based microelectronic devices. Silicon, the main element of microelectronics, is promising for spin-driven applications. We investigate the surface roughness and electron-phonon limited spin relaxation in silicon films taking into account the coupling between the relevant valleys through the Γ-point. We demonstrate that applying uniaxial stress along the [110] direction considerably suppresses the spin relaxation.