Bidimensional Empirical Mode Decomposition for multiresolution image coding

C. Guaragnella, A. Manni, F. Palumbo, T. Politi
{"title":"Bidimensional Empirical Mode Decomposition for multiresolution image coding","authors":"C. Guaragnella, A. Manni, F. Palumbo, T. Politi","doi":"10.1109/CIMSA.2010.5611762","DOIUrl":null,"url":null,"abstract":"Bidimensional Empirical Mode Decomposition (BEMD) provides a tool for image processing for its special ability to locally separate spatial frequencies. The Intrinsic Mode Functions (IMFs) other than the first are images of lower frequency components. The coding method presented in this paper uses the BEMD process to create two sub-band images from the original image: hi and low frequency. These images are differently subsampled and compressed by JPEG standard with different quality factor and then sent to a feedback system to compensate the quality loss in the compression process. The proposed paper proposes a technique to enhance jpeg encoding of images. Reconstructed images produce increased visual appearance of correspondent jpeg coded ones at same compression rate.","PeriodicalId":162890,"journal":{"name":"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2010.5611762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Bidimensional Empirical Mode Decomposition (BEMD) provides a tool for image processing for its special ability to locally separate spatial frequencies. The Intrinsic Mode Functions (IMFs) other than the first are images of lower frequency components. The coding method presented in this paper uses the BEMD process to create two sub-band images from the original image: hi and low frequency. These images are differently subsampled and compressed by JPEG standard with different quality factor and then sent to a feedback system to compensate the quality loss in the compression process. The proposed paper proposes a technique to enhance jpeg encoding of images. Reconstructed images produce increased visual appearance of correspondent jpeg coded ones at same compression rate.
二维经验模态分解用于多分辨率图像编码
二维经验模态分解(BEMD)以其独特的局部分离空间频率的能力为图像处理提供了一种工具。本征模态函数(IMFs)除了第一种是较低频率分量的图像。本文提出的编码方法是利用BEMD过程从原始图像中生成高频和低频两个子带图像。对这些图像进行不同的采样和JPEG标准的不同质量因子的压缩,然后发送到一个反馈系统,以补偿压缩过程中的质量损失。本文提出了一种增强图像jpeg编码的技术。在相同的压缩率下,重构图像比相应的jpeg编码图像具有更好的视觉效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信