Fast key-frame extraction for 3D reconstruction from a handheld video

Jongho Choi, Soon-chul Kwon, Kwang-Chul Son, Jisang Yoo
{"title":"Fast key-frame extraction for 3D reconstruction from a handheld video","authors":"Jongho Choi, Soon-chul Kwon, Kwang-Chul Son, Jisang Yoo","doi":"10.7236/IJASC.2016.5.4.1","DOIUrl":null,"url":null,"abstract":"In order to reconstruct a 3D model in video sequences, to select key frames that are easy to estimate a geometric model is essential. This paper proposes a method to easily extract informative frames from a handheld video. The method combines selection criteria based on appropriate-baseline determination between frames, frame jumping for fast searching in the video, geometric robust information criterion (GRIC) scores for the frame-to-frame homography and fundamental matrix, and blurry-frame removal. Through experiments with videos taken in indoor space, the proposed method shows creating a more robust 3D point cloud than existing methods, even in the presence of motion blur and degenerate motions.","PeriodicalId":297506,"journal":{"name":"The International Journal of Advanced Smart Convergence","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Advanced Smart Convergence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7236/IJASC.2016.5.4.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to reconstruct a 3D model in video sequences, to select key frames that are easy to estimate a geometric model is essential. This paper proposes a method to easily extract informative frames from a handheld video. The method combines selection criteria based on appropriate-baseline determination between frames, frame jumping for fast searching in the video, geometric robust information criterion (GRIC) scores for the frame-to-frame homography and fundamental matrix, and blurry-frame removal. Through experiments with videos taken in indoor space, the proposed method shows creating a more robust 3D point cloud than existing methods, even in the presence of motion blur and degenerate motions.
快速关键帧提取3D重建从手持视频
为了在视频序列中重建三维模型,选择易于估计几何模型的关键帧是至关重要的。本文提出了一种从手持视频中轻松提取信息帧的方法。该方法结合了基于帧间适当基线确定的选择准则、用于视频快速搜索的帧跳转、用于帧间单应性和基本矩阵的几何鲁棒信息准则(GRIC)评分以及模糊帧去除。通过在室内空间拍摄视频的实验,所提出的方法表明,即使在存在运动模糊和退化运动的情况下,也比现有方法创建更鲁棒的3D点云。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信