Comparative Analysis of Peak Current Prediction based on Random Forest and MLP Neural Network Algorithms

Priyanka Bhoyar, M. S. A. Rahman, S. Irfan, U. Amirulddin
{"title":"Comparative Analysis of Peak Current Prediction based on Random Forest and MLP Neural Network Algorithms","authors":"Priyanka Bhoyar, M. S. A. Rahman, S. Irfan, U. Amirulddin","doi":"10.1109/APL57308.2023.10181898","DOIUrl":null,"url":null,"abstract":"Lightning events have significant impacts on power systems, infrastructure, and the environment. Accurate and timely nowcasting of lightning occurrences is crucial for effective fault analysis and mitigation. This paper presents the development of a hybrid optimization-based deep learning model for lightning nowcasting, aiming to improve the accuracy and efficiency of lightning prediction. The objectives include the development of a deep learning model utilizing lightning data, spatial prediction of lightning events within a 1 km diameter, investigating the model’s capability for predicting specific time intervals and optimizing the computational cost and prediction accuracy. The proposed model demonstrates enhanced predictive capabilities and optimized computational efficiency, highlighting the potential of AI-driven techniques in lightning nowcasting and fault analysis applications.","PeriodicalId":371726,"journal":{"name":"2023 12th Asia-Pacific International Conference on Lightning (APL)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Asia-Pacific International Conference on Lightning (APL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APL57308.2023.10181898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Lightning events have significant impacts on power systems, infrastructure, and the environment. Accurate and timely nowcasting of lightning occurrences is crucial for effective fault analysis and mitigation. This paper presents the development of a hybrid optimization-based deep learning model for lightning nowcasting, aiming to improve the accuracy and efficiency of lightning prediction. The objectives include the development of a deep learning model utilizing lightning data, spatial prediction of lightning events within a 1 km diameter, investigating the model’s capability for predicting specific time intervals and optimizing the computational cost and prediction accuracy. The proposed model demonstrates enhanced predictive capabilities and optimized computational efficiency, highlighting the potential of AI-driven techniques in lightning nowcasting and fault analysis applications.
基于随机森林和MLP神经网络算法的峰值电流预测比较分析
雷电事件对电力系统、基础设施和环境都有重大影响。准确和及时的临近预报对有效的故障分析和缓解至关重要。本文提出了一种基于混合优化的闪电临近预报深度学习模型,旨在提高闪电预报的准确性和效率。目标包括开发一个利用闪电数据的深度学习模型,对直径1公里内的闪电事件进行空间预测,研究模型预测特定时间间隔的能力,优化计算成本和预测精度。该模型展示了增强的预测能力和优化的计算效率,突出了人工智能驱动技术在闪电临近预报和故障分析应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信