Parallel, scalable, memory-efficient backtracking for combinatoria modeling of large-scale biological systems

Byung-Hoon Park, Matthew C. Schmidt, K. Thomas, T. Karpinets, N. Samatova
{"title":"Parallel, scalable, memory-efficient backtracking for combinatoria modeling of large-scale biological systems","authors":"Byung-Hoon Park, Matthew C. Schmidt, K. Thomas, T. Karpinets, N. Samatova","doi":"10.1109/IPDPS.2008.4536180","DOIUrl":null,"url":null,"abstract":"Data-driven modeling of biological systems such as protein- protein interaction networks is data-intensive and combinatorially challenging. Backtracking can constrain a combinatorial search space. Yet, its recursive nature, exacerbated by data-intensity, limits its applicability for large-scale systems. Parallel, scalable, and memory-efficient backtracking is a promising approach. Parallel backtracking suffers from unbalanced loads. Load rebalancing via synchronization and data movement is prohibitively expensive. Balancing these discrepancies, while minimizing end-to-end execution time and memory requirements, is desirable. This paper introduces such a framework. Its scalability and efficiency, demonstrated on the maximal clique enumeration problem, are attributed to the proposed: (a) representation of search tree decomposition to enable parallelization; (b) depth-first parallel search to minimize memory requirement; (c) least stringent synchronization to minimize data movement; and (d) on-demand work stealing with stack splitting to minimize processors' idle time. The applications of this framework to real biological problems related to bioethanol production are discussed.","PeriodicalId":162608,"journal":{"name":"2008 IEEE International Symposium on Parallel and Distributed Processing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Parallel and Distributed Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2008.4536180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Data-driven modeling of biological systems such as protein- protein interaction networks is data-intensive and combinatorially challenging. Backtracking can constrain a combinatorial search space. Yet, its recursive nature, exacerbated by data-intensity, limits its applicability for large-scale systems. Parallel, scalable, and memory-efficient backtracking is a promising approach. Parallel backtracking suffers from unbalanced loads. Load rebalancing via synchronization and data movement is prohibitively expensive. Balancing these discrepancies, while minimizing end-to-end execution time and memory requirements, is desirable. This paper introduces such a framework. Its scalability and efficiency, demonstrated on the maximal clique enumeration problem, are attributed to the proposed: (a) representation of search tree decomposition to enable parallelization; (b) depth-first parallel search to minimize memory requirement; (c) least stringent synchronization to minimize data movement; and (d) on-demand work stealing with stack splitting to minimize processors' idle time. The applications of this framework to real biological problems related to bioethanol production are discussed.
大规模生物系统组合建模的并行、可扩展、内存高效回溯
蛋白质-蛋白质相互作用网络等生物系统的数据驱动建模是数据密集型的,并且具有组合挑战性。回溯可以约束组合搜索空间。然而,它的递归性质,加上数据强度,限制了它在大规模系统中的适用性。并行、可伸缩和内存高效的回溯是一种很有前途的方法。并行回溯受不平衡负载的影响。通过同步和数据移动进行负载再平衡的成本非常高。平衡这些差异,同时最小化端到端执行时间和内存需求是可取的。本文介绍了这样一个框架。它的可扩展性和效率,在最大团枚举问题上得到了证明,归功于提出的(a)搜索树分解的表示,以实现并行化;(b)深度优先并行搜索以最小化内存需求;(c)最不严格的同步以尽量减少数据移动;(d)按需工作窃取与堆栈拆分,以尽量减少处理器的空闲时间。讨论了该框架在与生物乙醇生产有关的实际生物学问题中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信