Audio-based emotion recognition using GMM supervector an SVM linear kernel

Dinh-Son Tran, Hyung-Jeong Yang, Soohyung Kim, Gueesang Lee, L. Do, Ngoc-Huynh Ho, Van Quan Nguyen
{"title":"Audio-based emotion recognition using GMM supervector an SVM linear kernel","authors":"Dinh-Son Tran, Hyung-Jeong Yang, Soohyung Kim, Gueesang Lee, L. Do, Ngoc-Huynh Ho, Van Quan Nguyen","doi":"10.1145/3184066.3184086","DOIUrl":null,"url":null,"abstract":"In this paper, we present an audio-based emotion recognition model by using OpenSmile, Gaussian mixture models (GMMs) Supervector and Support vector machines (SVM) with Linear kernel. Features are extracted from audio characteristics of emotional video through OpenSmile into Mel-frequency Cepstral Coefficient (MFCC) of 39 dimensions for each video. Furthermore, these features are normalized to the same size using GMM Supervector with 32 mixture components. Finally, data is classified using SVM with Linear Kernel. To evaluate the model, this paper using the AFEW2017 dataset and SAVEE dataset and show comparable the results on the state-of-the-art network. The experimental results perform with 37% on AFEW and 73.5% on SAVEE dataset. Our proposed achieves improved emotion recognition from audio as compared to several other models.","PeriodicalId":109559,"journal":{"name":"International Conference on Machine Learning and Soft Computing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184066.3184086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present an audio-based emotion recognition model by using OpenSmile, Gaussian mixture models (GMMs) Supervector and Support vector machines (SVM) with Linear kernel. Features are extracted from audio characteristics of emotional video through OpenSmile into Mel-frequency Cepstral Coefficient (MFCC) of 39 dimensions for each video. Furthermore, these features are normalized to the same size using GMM Supervector with 32 mixture components. Finally, data is classified using SVM with Linear Kernel. To evaluate the model, this paper using the AFEW2017 dataset and SAVEE dataset and show comparable the results on the state-of-the-art network. The experimental results perform with 37% on AFEW and 73.5% on SAVEE dataset. Our proposed achieves improved emotion recognition from audio as compared to several other models.
基于GMM超向量和SVM线性核的音频情感识别
本文利用OpenSmile、高斯混合模型(GMMs)、超向量机(Supervector)和线性核支持向量机(SVM)提出了一种基于音频的情感识别模型。通过OpenSmile将情感视频的音频特征提取为每个视频39维的Mel-frequency Cepstral Coefficient (MFCC)。此外,使用具有32个混合分量的GMM Supervector将这些特征归一化到相同的大小。最后,利用线性核支持向量机对数据进行分类。为了对模型进行评估,本文使用AFEW2017数据集和SAVEE数据集,并在最先进的网络上展示了可比较的结果。实验结果表明,在AFEW和SAVEE数据集上的效率分别为37%和73.5%。与其他几种模型相比,我们的方法实现了音频情感识别的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信