Inductive Semi-supervised Multi-Label Learning with Co-Training

Wang Zhan, Min-Ling Zhang
{"title":"Inductive Semi-supervised Multi-Label Learning with Co-Training","authors":"Wang Zhan, Min-Ling Zhang","doi":"10.1145/3097983.3098141","DOIUrl":null,"url":null,"abstract":"In multi-label learning, each training example is associated with multiple class labels and the task is to learn a mapping from the feature space to the power set of label space. It is generally demanding and time-consuming to obtain labels for training examples, especially for multi-label learning task where a number of class labels need to be annotated for the instance. To circumvent this difficulty, semi-supervised multi-label learning aims to exploit the readily-available unlabeled data to help build multi-label predictive model. Nonetheless, most semi-supervised solutions to multi-label learning work under transductive setting, which only focus on making predictions on existing unlabeled data and cannot generalize to unseen instances. In this paper, a novel approach named COINS is proposed to learning from labeled and unlabeled data by adapting the well-known co-training strategy which naturally works under inductive setting. In each co-training round, a dichotomy over the feature space is learned by maximizing the diversity between the two classifiers induced on either dichotomized feature subset. After that, pairwise ranking predictions on unlabeled data are communicated between either classifier for model refinement. Extensive experiments on a number of benchmark data sets show that COINS performs favorably against state-of-the-art multi-label learning approaches.","PeriodicalId":314049,"journal":{"name":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3097983.3098141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

In multi-label learning, each training example is associated with multiple class labels and the task is to learn a mapping from the feature space to the power set of label space. It is generally demanding and time-consuming to obtain labels for training examples, especially for multi-label learning task where a number of class labels need to be annotated for the instance. To circumvent this difficulty, semi-supervised multi-label learning aims to exploit the readily-available unlabeled data to help build multi-label predictive model. Nonetheless, most semi-supervised solutions to multi-label learning work under transductive setting, which only focus on making predictions on existing unlabeled data and cannot generalize to unseen instances. In this paper, a novel approach named COINS is proposed to learning from labeled and unlabeled data by adapting the well-known co-training strategy which naturally works under inductive setting. In each co-training round, a dichotomy over the feature space is learned by maximizing the diversity between the two classifiers induced on either dichotomized feature subset. After that, pairwise ranking predictions on unlabeled data are communicated between either classifier for model refinement. Extensive experiments on a number of benchmark data sets show that COINS performs favorably against state-of-the-art multi-label learning approaches.
具有协同训练的归纳半监督多标签学习
在多标签学习中,每个训练样例与多个类标签相关联,任务是学习从特征空间到标签空间幂集的映射。一般来说,获取训练样例的标签是费时费力的,特别是对于需要为实例标注多个类标签的多标签学习任务。为了克服这一困难,半监督多标签学习旨在利用容易获得的未标记数据来帮助构建多标签预测模型。然而,大多数多标签学习的半监督解决方案都是在转导设置下工作的,它只关注对现有的未标记数据进行预测,而不能推广到未见过的实例。本文提出了一种新的方法,即COINS,通过采用众所周知的在归纳设置下自然有效的共同训练策略,从标记和未标记的数据中学习。在每一轮共同训练中,通过最大化两个分类器在任何一个二分类特征子集上产生的多样性来学习特征空间的二分类。之后,对未标记数据的两两排序预测在两个分类器之间进行沟通,以进行模型优化。在许多基准数据集上进行的广泛实验表明,COINS与最先进的多标签学习方法相比表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信