M. Liang, Junping Du, Xiaowen Cao, Yang Yu, Kangkang Lu, Zhe Xue, Min Zhang
{"title":"Semantic Structure Enhanced Contrastive Adversarial Hash Network for Cross-media Representation Learning","authors":"M. Liang, Junping Du, Xiaowen Cao, Yang Yu, Kangkang Lu, Zhe Xue, Min Zhang","doi":"10.1145/3503161.3548391","DOIUrl":null,"url":null,"abstract":"Deep cross-media hashing technology provides an efficient cross-media representation learning solution for cross-media search. However, the existing methods do not consider both fine-grained semantic features and semantic structures to mine implicit cross-media semantic associations, which leads to weaker semantic discrimination and consistency for cross-media representation. To tackle this problem, we propose a novel semantic structure enhanced contrastive adversarial hash network for cross-media representation learning (SCAHN). Firstly, in order to capture more fine-grained cross-media semantic associations, a fine-grained cross-media attention feature learning network is constructed, thus the learned saliency features of different modalities are more conducive to cross-media semantic alignment and fusion. Secondly, for further improving learning ability of implicit cross-media semantic associations, a semantic label association graph is constructed, and the graph convolutional network is utilized to mine the implicit semantic structures, thus guiding learning of discriminative features of different modalities. Thirdly, a cross-media and intra-media contrastive adversarial representation learning mechanism is proposed to further enhance the semantic discriminativeness of different modal representations, and a dual-way adversarial learning strategy is developed to maximize cross-media semantic associations, so as to obtain cross-media unified representations with stronger discriminativeness and semantic consistency preserving power. Extensive experiments on several cross-media benchmark datasets demonstrate that the proposed SCAHN outperforms the state-of-the-art methods.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3548391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Deep cross-media hashing technology provides an efficient cross-media representation learning solution for cross-media search. However, the existing methods do not consider both fine-grained semantic features and semantic structures to mine implicit cross-media semantic associations, which leads to weaker semantic discrimination and consistency for cross-media representation. To tackle this problem, we propose a novel semantic structure enhanced contrastive adversarial hash network for cross-media representation learning (SCAHN). Firstly, in order to capture more fine-grained cross-media semantic associations, a fine-grained cross-media attention feature learning network is constructed, thus the learned saliency features of different modalities are more conducive to cross-media semantic alignment and fusion. Secondly, for further improving learning ability of implicit cross-media semantic associations, a semantic label association graph is constructed, and the graph convolutional network is utilized to mine the implicit semantic structures, thus guiding learning of discriminative features of different modalities. Thirdly, a cross-media and intra-media contrastive adversarial representation learning mechanism is proposed to further enhance the semantic discriminativeness of different modal representations, and a dual-way adversarial learning strategy is developed to maximize cross-media semantic associations, so as to obtain cross-media unified representations with stronger discriminativeness and semantic consistency preserving power. Extensive experiments on several cross-media benchmark datasets demonstrate that the proposed SCAHN outperforms the state-of-the-art methods.