An Experience Replay Based Adaptive Disturbance Observer for a Class of Nonlinear Systems

Zhitao Li, Jinsheng Sun, H. Modares
{"title":"An Experience Replay Based Adaptive Disturbance Observer for a Class of Nonlinear Systems","authors":"Zhitao Li, Jinsheng Sun, H. Modares","doi":"10.1109/CCTA41146.2020.9206359","DOIUrl":null,"url":null,"abstract":"This paper designs an adaptive disturbance observer for a class of nonlinear systems with unknown disturbances where the disturbance is assumed to be generated by some unknown dynamics. we first use a filtered regressor approach to model the nonlinear systems and the disturbance. We show that this filtered regressor form allows us to estimate the disturbance using only measured state. Next, to improve convergence speed we propose a new adaptive observer with experience replay to ensure that disturbance estimate error is globally exponentially stable. Experience replay uses past measured data to not only assure that the observer estimation error converges to zero with a rate depends on the Minimum eigenvalue of the history stack matrix. Compared to the existing results, we neither use the knowledge of the disturbance dynamics nor the state derivatives in our adaptive protocol. Finally, we use a simulation example to illustrate the effectiveness of our results.","PeriodicalId":241335,"journal":{"name":"2020 IEEE Conference on Control Technology and Applications (CCTA)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA41146.2020.9206359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper designs an adaptive disturbance observer for a class of nonlinear systems with unknown disturbances where the disturbance is assumed to be generated by some unknown dynamics. we first use a filtered regressor approach to model the nonlinear systems and the disturbance. We show that this filtered regressor form allows us to estimate the disturbance using only measured state. Next, to improve convergence speed we propose a new adaptive observer with experience replay to ensure that disturbance estimate error is globally exponentially stable. Experience replay uses past measured data to not only assure that the observer estimation error converges to zero with a rate depends on the Minimum eigenvalue of the history stack matrix. Compared to the existing results, we neither use the knowledge of the disturbance dynamics nor the state derivatives in our adaptive protocol. Finally, we use a simulation example to illustrate the effectiveness of our results.
一类非线性系统基于经验回放的自适应扰动观测器
针对一类具有未知扰动的非线性系统,设计了一种自适应扰动观测器,该系统假定扰动是由未知动力学产生的。我们首先使用滤波回归方法对非线性系统和干扰进行建模。我们表明,这种滤波回归量形式允许我们仅使用测量状态来估计干扰。其次,为了提高收敛速度,我们提出了一种新的具有经验重放的自适应观测器,以确保扰动估计误差全局指数稳定。经验重放利用过去的测量数据,不仅保证观测器估计误差收敛到零,其速率取决于历史堆栈矩阵的最小特征值。与已有的结果相比,我们在自适应协议中既没有使用扰动动力学知识,也没有使用状态导数。最后,通过一个仿真实例说明了本文研究结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信