Approximation of signals (functions) of Lip(α, p), (p > 1)-class by trigonometric polynomials

K. Khatri, V. Narayan
{"title":"Approximation of signals (functions) of Lip(α, p), (p > 1)-class by trigonometric polynomials","authors":"K. Khatri, V. Narayan","doi":"10.2298/pim1818251k","DOIUrl":null,"url":null,"abstract":". Given a function f in the class Lip( α,p ) (0 < α 6 1 ,p > 1), Mittal and Singh (2014) approximated such an f by using trigonometric polynomials, which are the n th terms of either certain Riesz mean or Nörlund mean trans-forms of the Fourier series representation for f . They showed that the degree of approximation is O (( λ ( n )) − α ) and extended two theorems of Leindler (2005) where he had weakened the conditions on { p n } given by Chandra (2002) to more general classes of triangular matrix methods. We obtain the same degree of approximation for a more general class of lower triangular matrices.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/pim1818251k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. Given a function f in the class Lip( α,p ) (0 < α 6 1 ,p > 1), Mittal and Singh (2014) approximated such an f by using trigonometric polynomials, which are the n th terms of either certain Riesz mean or Nörlund mean trans-forms of the Fourier series representation for f . They showed that the degree of approximation is O (( λ ( n )) − α ) and extended two theorems of Leindler (2005) where he had weakened the conditions on { p n } given by Chandra (2002) to more general classes of triangular matrix methods. We obtain the same degree of approximation for a more general class of lower triangular matrices.
用三角多项式逼近Lip(α, p), (p > 1)-类的信号(函数)
. 给定Lip(α,p) (0 < α 61,p > 1)类中的函数f, Mittal和Singh(2014)通过使用三角多项式来近似这样的f,三角多项式是f的傅里叶级数表示的某些Riesz均值或Nörlund均值变换的第n项。他们证明了近似度为O ((λ (n))−α),并将Leindler(2005)的两个定理进行了推广,其中Leindler将钱德拉(2002)给出的{pn}上的条件弱化为更一般的三角矩阵方法。对于一类更一般的下三角矩阵,我们得到了相同的近似程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信