Harsha Kokel, Junkyu Lee, Michael Katz, Shirin Sohrabi, Kavitha Srinivas
{"title":"Action Space Reduction for Planning Domains","authors":"Harsha Kokel, Junkyu Lee, Michael Katz, Shirin Sohrabi, Kavitha Srinivas","doi":"10.24963/ijcai.2023/599","DOIUrl":null,"url":null,"abstract":"Planning tasks succinctly represent labeled transition systems, with each ground action corresponding to a label. This granularity, however, is not necessary for solving planning tasks and can be harmful, especially for model-free methods. In order to apply such methods, the label sets are often manually reduced. In this work, we propose automating this manual process. We characterize a valid label reduction for classical planning tasks and propose an automated way of obtaining such valid reductions by leveraging lifted mutex groups. Our experiments show a significant reduction in the action label space size across a wide collection of planning domains. We demonstrate the benefit of our automated label reduction in two separate use cases: improved sample complexity of model-free reinforcement learning algorithms and speeding up successor generation in lifted planning. The code and supplementary material are available at https://github.com/IBM/Parameter-Seed-Set.","PeriodicalId":394530,"journal":{"name":"International Joint Conference on Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Joint Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24963/ijcai.2023/599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Planning tasks succinctly represent labeled transition systems, with each ground action corresponding to a label. This granularity, however, is not necessary for solving planning tasks and can be harmful, especially for model-free methods. In order to apply such methods, the label sets are often manually reduced. In this work, we propose automating this manual process. We characterize a valid label reduction for classical planning tasks and propose an automated way of obtaining such valid reductions by leveraging lifted mutex groups. Our experiments show a significant reduction in the action label space size across a wide collection of planning domains. We demonstrate the benefit of our automated label reduction in two separate use cases: improved sample complexity of model-free reinforcement learning algorithms and speeding up successor generation in lifted planning. The code and supplementary material are available at https://github.com/IBM/Parameter-Seed-Set.