A data-driven framework to identify human-critical autonomous vehicle testing and deployment zones

H. M. A. Aziz, A. Islam
{"title":"A data-driven framework to identify human-critical autonomous vehicle testing and deployment zones","authors":"H. M. A. Aziz, A. Islam","doi":"10.1145/3486629.3490692","DOIUrl":null,"url":null,"abstract":"We proposed a data-driven framework that leverages machine learning and econometric modeling techniques to investigate autonomous vehicle (AV) involved crashes and maps human-critical safety factors to operational design domains. The goal is to assist the infrastructure owner-operators in identifying human-critical AV-testing-and-deployment zones based on data-driven insights from both AV-testing data (e.g., California Department of Motor Vehicle AV crash reports) and historical crash data involving only human drivers. First, we analyzed AV crash data collected from the CA DMV website for May 2018 to December 2020 using ML-based and econometric models incorporating attributes such as weather, lighting condition, road surface condition, vehicle miles traveled, and collision type. Later we use the findings to demonstrate the framework's applicability for New York City crash data at the Zip Code level (2012--2021).","PeriodicalId":263760,"journal":{"name":"Proceedings of the 14th ACM SIGSPATIAL International Workshop on Computational Transportation Science","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th ACM SIGSPATIAL International Workshop on Computational Transportation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486629.3490692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We proposed a data-driven framework that leverages machine learning and econometric modeling techniques to investigate autonomous vehicle (AV) involved crashes and maps human-critical safety factors to operational design domains. The goal is to assist the infrastructure owner-operators in identifying human-critical AV-testing-and-deployment zones based on data-driven insights from both AV-testing data (e.g., California Department of Motor Vehicle AV crash reports) and historical crash data involving only human drivers. First, we analyzed AV crash data collected from the CA DMV website for May 2018 to December 2020 using ML-based and econometric models incorporating attributes such as weather, lighting condition, road surface condition, vehicle miles traveled, and collision type. Later we use the findings to demonstrate the framework's applicability for New York City crash data at the Zip Code level (2012--2021).
一个数据驱动的框架,用于识别对人类至关重要的自动驾驶汽车测试和部署区域
我们提出了一个数据驱动的框架,利用机器学习和计量经济建模技术来调查自动驾驶汽车(AV)涉及的碰撞,并将人类关键安全因素映射到操作设计领域。其目标是帮助基础设施所有者和运营商根据自动驾驶汽车测试数据(例如,加州机动车辆部门的自动驾驶汽车碰撞报告)和仅涉及人类驾驶员的历史碰撞数据,确定对人类至关重要的自动驾驶汽车测试和部署区域。首先,我们分析了2018年5月至2020年12月从CA DMV网站收集的自动驾驶汽车碰撞数据,使用基于ml的模型和计量经济学模型,包括天气、照明条件、路面状况、车辆行驶里程和碰撞类型等属性。随后,我们使用这些发现来证明该框架在邮政编码级别(2012- 2021)的纽约市碰撞数据的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信