Energy Efficient Multi-Pair Massive MIMO Two-Way AF Relaying: A Deep Learning Approach

Venkatesh Tentu, D. N. Amudala, Anupama Rajoriya, E. Sharma, Rohit Budhiraja
{"title":"Energy Efficient Multi-Pair Massive MIMO Two-Way AF Relaying: A Deep Learning Approach","authors":"Venkatesh Tentu, D. N. Amudala, Anupama Rajoriya, E. Sharma, Rohit Budhiraja","doi":"10.1109/COMSNETS48256.2020.9027391","DOIUrl":null,"url":null,"abstract":"We consider two-way amplify and forward half-duplex massive multiple-input multiple-output (MIMO) relaying, where multiple user-pairs exchange information via a shared relay. Most of the existing work on massive MIMO relaying solves the weighted sum energy efficiency (WSEE) maximization problem using iterative optimization algorithms, which are not suitable for real-time implementation due to high computational complexity. We develop a deep neural network (DNN) based power allocation to maximize the WSEE by learning a unknown function which maps the input (i.e. channel fading coefficients, system total transmit power and relay antennas) and the output optimal power vector. Once the DNN learned the unknown map, DNN provides a non-iterative closed form expression to solve the WSEE maximization problem in real-time with much lower computational complexity. We numerically demonstrate the performance of the proposed approach achieves optimal performance as the existing iterative optimization methods.","PeriodicalId":265871,"journal":{"name":"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on COMmunication Systems & NETworkS (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS48256.2020.9027391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider two-way amplify and forward half-duplex massive multiple-input multiple-output (MIMO) relaying, where multiple user-pairs exchange information via a shared relay. Most of the existing work on massive MIMO relaying solves the weighted sum energy efficiency (WSEE) maximization problem using iterative optimization algorithms, which are not suitable for real-time implementation due to high computational complexity. We develop a deep neural network (DNN) based power allocation to maximize the WSEE by learning a unknown function which maps the input (i.e. channel fading coefficients, system total transmit power and relay antennas) and the output optimal power vector. Once the DNN learned the unknown map, DNN provides a non-iterative closed form expression to solve the WSEE maximization problem in real-time with much lower computational complexity. We numerically demonstrate the performance of the proposed approach achieves optimal performance as the existing iterative optimization methods.
节能多对大规模MIMO双向自动对焦中继:一种深度学习方法
我们考虑双向放大和转发半双工大规模多输入多输出(MIMO)中继,其中多个用户对通过共享中继交换信息。现有的大规模MIMO中继研究大多采用迭代优化算法解决加权和能量效率(WSEE)最大化问题,但由于计算量大,不适合实时实现。我们开发了一种基于深度神经网络(DNN)的功率分配,通过学习映射输入(即信道衰落系数,系统总发射功率和中继天线)和输出最优功率矢量的未知函数来最大化WSEE。一旦DNN学习到未知映射,DNN提供非迭代封闭形式表达式,以更低的计算复杂度实时解决WSEE最大化问题。数值验证了所提方法的性能与现有迭代优化方法一样达到了最优的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信