Inferring higher level learning information from low level data for the Khan Academy platform

P. Merino, José A. Ruipérez Valiente, C. D. Kloos
{"title":"Inferring higher level learning information from low level data for the Khan Academy platform","authors":"P. Merino, José A. Ruipérez Valiente, C. D. Kloos","doi":"10.1145/2460296.2460318","DOIUrl":null,"url":null,"abstract":"To process low level educational data in the form of user events and interactions and convert them into information about the learning process that is both meaningful and interesting presents a challenge. In this paper, we propose a set of high level learning parameters relating to total use, efficient use, activity time distribution, gamification habits, or exercise-making habits, and provide the measures to calculate them as a result of processing low level data. We apply these parameters and measures in a real physics course with more than 100 students using the Khan Academy platform at Universidad Carlos III de Madrid. We show how these parameters can be meaningful and useful for the learning process based on the results from this experience.","PeriodicalId":162301,"journal":{"name":"International Conference on Learning Analytics and Knowledge","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2460296.2460318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

To process low level educational data in the form of user events and interactions and convert them into information about the learning process that is both meaningful and interesting presents a challenge. In this paper, we propose a set of high level learning parameters relating to total use, efficient use, activity time distribution, gamification habits, or exercise-making habits, and provide the measures to calculate them as a result of processing low level data. We apply these parameters and measures in a real physics course with more than 100 students using the Khan Academy platform at Universidad Carlos III de Madrid. We show how these parameters can be meaningful and useful for the learning process based on the results from this experience.
从可汗学院平台的低层次数据推断更高层次的学习信息
处理用户事件和交互形式的低级教育数据,并将其转换为有关学习过程的有意义和有趣的信息,这是一个挑战。在本文中,我们提出了一套与总使用、有效使用、活动时间分布、游戏化习惯或锻炼习惯相关的高水平学习参数,并提供了通过处理低水平数据来计算这些参数的方法。我们在马德里卡洛斯三世大学可汗学院的平台上,将这些参数和测量方法应用到100多名学生的真实物理课程中。我们将根据这一经验的结果展示这些参数如何对学习过程有意义和有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信