Trust inference in online social networks

A. Papaoikonomou, Magdalini Kardara, T. Varvarigou
{"title":"Trust inference in online social networks","authors":"A. Papaoikonomou, Magdalini Kardara, T. Varvarigou","doi":"10.1145/2808797.2809418","DOIUrl":null,"url":null,"abstract":"We study the problem of trust inference in signed social networks, in which, in addition to rating items, users can also indicate their disposition towards each other through directional signed links. We explore the problem in a semi-supervised setting, where given a small fraction of signed edges we classify the remaining edges by leveraging contextual information (i.e. the users' ratings). In order to model user behavior, we use deep learning algorithms i.e. a variation of Restricted Boltzmann machine and Autoencoders for user encoding and edge classification respectively. We evaluate our approach on a large-scale real-world dataset and show that it outperforms state-of-the art methods.","PeriodicalId":371988,"journal":{"name":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808797.2809418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We study the problem of trust inference in signed social networks, in which, in addition to rating items, users can also indicate their disposition towards each other through directional signed links. We explore the problem in a semi-supervised setting, where given a small fraction of signed edges we classify the remaining edges by leveraging contextual information (i.e. the users' ratings). In order to model user behavior, we use deep learning algorithms i.e. a variation of Restricted Boltzmann machine and Autoencoders for user encoding and edge classification respectively. We evaluate our approach on a large-scale real-world dataset and show that it outperforms state-of-the art methods.
在线社交网络中的信任推理
我们研究了签名社交网络中的信任推理问题,在签名社交网络中,用户除了对项目进行评级外,还可以通过定向签名链接来表明他们对彼此的倾向。我们在半监督设置中探索这个问题,其中给定一小部分签名边,我们通过利用上下文信息(即用户的评级)对剩余的边进行分类。为了对用户行为建模,我们使用深度学习算法,即限制玻尔兹曼机和自动编码器的一种变体,分别用于用户编码和边缘分类。我们在大规模的真实世界数据集上评估了我们的方法,并表明它优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信