{"title":"Transport of Heat and Mass with Electrical Field - from Earth to Space","authors":"J. Yagoobi","doi":"10.1109/ICDL.2019.8796729","DOIUrl":null,"url":null,"abstract":"Pumping of single-phase liquid or two-phase liquid/vapor is encountered in a wide range of technological applications. Utilization of electro-hydro-dynamics (EHD) to induce fluid motion is known as an effective approach for situations where special requirements and restrictions are imposed, while enhanced heat and mass transfer are required. The implementation of the EHD phenomena to heat and mass transport introduces complex interactions among inter-dependent variables. The EHD pumping phenomena involve interaction of electric fields and flow fields in a dielectric fluid medium. This interaction induces the fluid motion through the presence of electric body force.In this paper, the fundamentals of EHD driven fluid flow are described. The evolution of EHD driven heat and mass transport technologies for space applications are presented. Specifically, the results of single-phase liquid and two-phase heat transport experiments that were conducted on board variable-gravity parabolic flights are provided. The EHD conduction pumping technology is expected to provide technological advances that will support various space missions.","PeriodicalId":102217,"journal":{"name":"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Dielectric Liquids (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2019.8796729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Pumping of single-phase liquid or two-phase liquid/vapor is encountered in a wide range of technological applications. Utilization of electro-hydro-dynamics (EHD) to induce fluid motion is known as an effective approach for situations where special requirements and restrictions are imposed, while enhanced heat and mass transfer are required. The implementation of the EHD phenomena to heat and mass transport introduces complex interactions among inter-dependent variables. The EHD pumping phenomena involve interaction of electric fields and flow fields in a dielectric fluid medium. This interaction induces the fluid motion through the presence of electric body force.In this paper, the fundamentals of EHD driven fluid flow are described. The evolution of EHD driven heat and mass transport technologies for space applications are presented. Specifically, the results of single-phase liquid and two-phase heat transport experiments that were conducted on board variable-gravity parabolic flights are provided. The EHD conduction pumping technology is expected to provide technological advances that will support various space missions.