Extraction of Binary Features from Fingerprint Topology

O. Ushmaev, V. Kuznetsov, V. Gudkov
{"title":"Extraction of Binary Features from Fingerprint Topology","authors":"O. Ushmaev, V. Kuznetsov, V. Gudkov","doi":"10.1109/ICHB.2011.6094352","DOIUrl":null,"url":null,"abstract":"We propose a technique of extraction repeatable binary string from fingerprint images. We extract binary features from topological relations between minutiae points. For an arbitrary minutiae point we trace neighboring ridges until we encounter event: minutiae or projection of minutiae. Then we encode these events. Thus we obtain 50-100 bit descriptions for each minutiae point. In order to extract longer binary string, we propose two techniques. First, we select 2^l binary strings (centers) of the same length as topological descriptor. Then for each minutiae descriptor we select k nearest centers. Selected subset of centers is represented by 2^l bit long binary string. The self-aligned technique has significant errors (FRR=30% at FAR=0.1%). The second tehnique requires public helper. We concatenate descriptions of 5-8 minutiae points. Data that are necessary to find and order minutiae subset is stored in a public helper. Thus we extracted 384-512 bit binary string with approximately 20% erroneous bits. Errors are corrected using two-layer BCH-major voting codes. Experiments on FVC2002DB1 dataset and private dataset (100 different fingers, with 3 samples per finger) show that 20-40 bit error-free binary string can be reproduced from genuine fingerprint with 90% success rate.","PeriodicalId":378764,"journal":{"name":"2011 International Conference on Hand-Based Biometrics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Hand-Based Biometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHB.2011.6094352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a technique of extraction repeatable binary string from fingerprint images. We extract binary features from topological relations between minutiae points. For an arbitrary minutiae point we trace neighboring ridges until we encounter event: minutiae or projection of minutiae. Then we encode these events. Thus we obtain 50-100 bit descriptions for each minutiae point. In order to extract longer binary string, we propose two techniques. First, we select 2^l binary strings (centers) of the same length as topological descriptor. Then for each minutiae descriptor we select k nearest centers. Selected subset of centers is represented by 2^l bit long binary string. The self-aligned technique has significant errors (FRR=30% at FAR=0.1%). The second tehnique requires public helper. We concatenate descriptions of 5-8 minutiae points. Data that are necessary to find and order minutiae subset is stored in a public helper. Thus we extracted 384-512 bit binary string with approximately 20% erroneous bits. Errors are corrected using two-layer BCH-major voting codes. Experiments on FVC2002DB1 dataset and private dataset (100 different fingers, with 3 samples per finger) show that 20-40 bit error-free binary string can be reproduced from genuine fingerprint with 90% success rate.
指纹拓扑中二值特征的提取
提出了一种从指纹图像中提取可重复二进制字符串的方法。我们从极小点之间的拓扑关系中提取二值特征。对于任意一个细节点,我们沿着相邻的脊线,直到遇到事件:细节点或细节点的投影。然后我们对这些事件进行编码。因此,我们得到了每个细节点的50-100比特的描述。为了提取更长的二进制字符串,我们提出了两种技术。首先,我们选择2^ 1个长度相同的二进制字符串(中心)作为拓扑描述符。然后为每个细节描述符选择k个最近的中心。所选的中心子集用2^l位长二进制字符串表示。自对准技术具有显著的误差(在FAR=0.1%时,FRR=30%)。第二种技术需要公共助手。我们将5-8个细节点的描述串联起来。查找和排序子集所需的数据存储在公共帮助器中。因此,我们提取了384-512位的二进制字符串,其中大约有20%的错误位。使用双层bch主要投票代码纠正错误。在FVC2002DB1数据集和私人数据集(100个不同的手指,每个手指3个样本)上的实验表明,该方法可以以90%的成功率复制出20-40比特的无错误二进制字符串。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信