Cost Optimization for the Edge-Cloud Continuum by Energy-Aware Workload Placement

Rickard Brännvall, Tina Stark, Jonas Gustafsson, Mats Eriksson, J. Summers
{"title":"Cost Optimization for the Edge-Cloud Continuum by Energy-Aware Workload Placement","authors":"Rickard Brännvall, Tina Stark, Jonas Gustafsson, Mats Eriksson, J. Summers","doi":"10.1145/3599733.3600253","DOIUrl":null,"url":null,"abstract":"This article investigates the problem of where to place the computation workload in an edge-cloud network topology considering the trade-off between the location-specific cost of computation and data communication. For this purpose, a Monte Carlo simulation model is defined that accounts for different workload types, their distribution across time and location, as well as correlation structure. Results confirm and quantify the intuition that optimization can be achieved by distributing a part of cloud computation to make efficient use of resources in an edge data center network, with operational energy savings of 4–6% and up to 50% reduction in its claim for cloud capacity.","PeriodicalId":114998,"journal":{"name":"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems","volume":"383 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the 14th ACM International Conference on Future Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3599733.3600253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article investigates the problem of where to place the computation workload in an edge-cloud network topology considering the trade-off between the location-specific cost of computation and data communication. For this purpose, a Monte Carlo simulation model is defined that accounts for different workload types, their distribution across time and location, as well as correlation structure. Results confirm and quantify the intuition that optimization can be achieved by distributing a part of cloud computation to make efficient use of resources in an edge data center network, with operational energy savings of 4–6% and up to 50% reduction in its claim for cloud capacity.
基于能量感知工作负载配置的边缘云连续体成本优化
考虑到特定位置的计算成本和数据通信之间的权衡,本文研究了在边缘云网络拓扑中将计算工作负载放在何处的问题。为此,定义了一个蒙特卡罗仿真模型,该模型考虑了不同的工作负载类型、它们在时间和地点上的分布以及相关结构。结果证实并量化了这样一种直觉,即可以通过分配一部分云计算来实现优化,从而有效利用边缘数据中心网络中的资源,从而节省4-6%的运营能源,并减少高达50%的云容量要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信