A. Abdullah, Yong Han Seah, Stefanie Mei Mei Chuah, M. S. N. B. A Wahi
{"title":"Accelerated FDP Reservoir Studies in Challenging Brownfields Utilizing Digital Could Technologies","authors":"A. Abdullah, Yong Han Seah, Stefanie Mei Mei Chuah, M. S. N. B. A Wahi","doi":"10.2118/211350-ms","DOIUrl":null,"url":null,"abstract":"\n PETRONAS Baronia field is a mature oil field with over 45 years of production history, located offshore Sarawak, Malaysia. It consists of several vertically stacked clastic sandstone reservoirs, namely two major reservoirs: S and V2 reservoirs. Both reservoirs have been on production since 1970's with the production strategy evolving over the years to maximize recovery. Natural depletion, infill drilling, water and gas injection, and recently Immiscible Water-Alternating-Gas (IWAG) IOR/EOR strategies have been implemented. All these elements combined with the subsurface uncertainties pose challenges to history match and to conduct probabilistic forecast studies on the dynamic models. Conventionally, the development scenarios for subsurface investigation are limited due to finite computing resources. As PETRONAS is shifting its portfolios to develop more complex and challenging fields, the need for transformation in development concept evaluation is evident. This is key for proper risk and uncertainties quantification. The notable challenges are a) limited number of development scenarios being investigated, evaluated, and compared; b) limited software licenses and infrastructure availability; c) lack of data and decisions traceability.\n These limitations are addressed by the PETRONAS LiveFDP digital transformation initiative commenced in 2019, through deployment of digital cloud technologies and solutions with scalable High- Performance Computing (HPC) environment. The cloud-based native and Petrotechnical applications enable remote work, ensure full data traceability and auditability, enable multi-realization ensemble analysis, and streamline the automated integration from the reservoir engineering ensemble workflow to economic analysis. Unlimited cloud computing power and licenses facilitate a broader spectrum of reservoir simulation cases to be investigated in a fast-tracked manner.\n The cloud HPC infrastructure has shortened the history matching cycle from 3 months to 1.5 months. The team has also observed over 5 times speed enhancement on simulation run performance using cloud computing compared to virtual machine and on-premise infrastructure. Utilizing the cloud solutions and ensemble probabilistic approach, the team has achieved over 90% of history match quality through 300 realizations per ensemble running concurrently and completed within 2 hours. The optimized IWAG injection resulted in 2% (~1MMStb) higher oil reserves with 37% less gas injection and 40% shorter injection cycles. This has improved gas sales and prioritization in the field while also monetizing the oil\n reserves. The ensemble analyses are then visualized using cloud-based data analytics system whereby key realizations and uncertainty parameters are further reviewed and highlighted across various disciplines collaboratively at real time.","PeriodicalId":249690,"journal":{"name":"Day 2 Tue, November 01, 2022","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 01, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/211350-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
PETRONAS Baronia field is a mature oil field with over 45 years of production history, located offshore Sarawak, Malaysia. It consists of several vertically stacked clastic sandstone reservoirs, namely two major reservoirs: S and V2 reservoirs. Both reservoirs have been on production since 1970's with the production strategy evolving over the years to maximize recovery. Natural depletion, infill drilling, water and gas injection, and recently Immiscible Water-Alternating-Gas (IWAG) IOR/EOR strategies have been implemented. All these elements combined with the subsurface uncertainties pose challenges to history match and to conduct probabilistic forecast studies on the dynamic models. Conventionally, the development scenarios for subsurface investigation are limited due to finite computing resources. As PETRONAS is shifting its portfolios to develop more complex and challenging fields, the need for transformation in development concept evaluation is evident. This is key for proper risk and uncertainties quantification. The notable challenges are a) limited number of development scenarios being investigated, evaluated, and compared; b) limited software licenses and infrastructure availability; c) lack of data and decisions traceability.
These limitations are addressed by the PETRONAS LiveFDP digital transformation initiative commenced in 2019, through deployment of digital cloud technologies and solutions with scalable High- Performance Computing (HPC) environment. The cloud-based native and Petrotechnical applications enable remote work, ensure full data traceability and auditability, enable multi-realization ensemble analysis, and streamline the automated integration from the reservoir engineering ensemble workflow to economic analysis. Unlimited cloud computing power and licenses facilitate a broader spectrum of reservoir simulation cases to be investigated in a fast-tracked manner.
The cloud HPC infrastructure has shortened the history matching cycle from 3 months to 1.5 months. The team has also observed over 5 times speed enhancement on simulation run performance using cloud computing compared to virtual machine and on-premise infrastructure. Utilizing the cloud solutions and ensemble probabilistic approach, the team has achieved over 90% of history match quality through 300 realizations per ensemble running concurrently and completed within 2 hours. The optimized IWAG injection resulted in 2% (~1MMStb) higher oil reserves with 37% less gas injection and 40% shorter injection cycles. This has improved gas sales and prioritization in the field while also monetizing the oil
reserves. The ensemble analyses are then visualized using cloud-based data analytics system whereby key realizations and uncertainty parameters are further reviewed and highlighted across various disciplines collaboratively at real time.