Output feedback controller design for Quadratic Cost Minimization for Linear Systems with Polytopic Uncertainties

Tamires S. De Simone, Igor Thiago Minari Ramos, L. Bocca, Uiliam Nelson L. T. Alves, D. B. Bizarro, M. Teixeira
{"title":"Output feedback controller design for Quadratic Cost Minimization for Linear Systems with Polytopic Uncertainties","authors":"Tamires S. De Simone, Igor Thiago Minari Ramos, L. Bocca, Uiliam Nelson L. T. Alves, D. B. Bizarro, M. Teixeira","doi":"10.1109/INDUSCON51756.2021.9529532","DOIUrl":null,"url":null,"abstract":"This paper proposes a new robust static output feedback control design considering the linear quadratic regulator (LQR) problem based on Linear Matrix Inequalities (LMIs). The output static feedback controller can be used when all the state variables are not available for feedback. This way, the controller design can solve practical problems in which there are no sensors for all state variables of the plant. Furthermore, the presented robust control methodology minimizes an upper bound of a quadratic index (guaranteed cost) related to the output and the control signal of the uncertain closed-loop linear system. Through the designer’s knowledge of the system to be controlled, it is possible to obtain optimized performances. In order to find the best guaranteed cost related to the performance of the system, an algorithm of differential evolution for global optimization was used. The controller was implemented in a bench scale earthquake simulator and the results illustrate the effectiveness of the proposed methodology. In the implementation, a signal fault is assumed, and even in the presence of fault occurrence, the oscillations are attenuated by the proposed robust control.","PeriodicalId":344476,"journal":{"name":"2021 14th IEEE International Conference on Industry Applications (INDUSCON)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 14th IEEE International Conference on Industry Applications (INDUSCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDUSCON51756.2021.9529532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new robust static output feedback control design considering the linear quadratic regulator (LQR) problem based on Linear Matrix Inequalities (LMIs). The output static feedback controller can be used when all the state variables are not available for feedback. This way, the controller design can solve practical problems in which there are no sensors for all state variables of the plant. Furthermore, the presented robust control methodology minimizes an upper bound of a quadratic index (guaranteed cost) related to the output and the control signal of the uncertain closed-loop linear system. Through the designer’s knowledge of the system to be controlled, it is possible to obtain optimized performances. In order to find the best guaranteed cost related to the performance of the system, an algorithm of differential evolution for global optimization was used. The controller was implemented in a bench scale earthquake simulator and the results illustrate the effectiveness of the proposed methodology. In the implementation, a signal fault is assumed, and even in the presence of fault occurrence, the oscillations are attenuated by the proposed robust control.
具有多面体不确定性线性系统二次代价最小化的输出反馈控制器设计
针对基于线性矩阵不等式的线性二次型调节器(LQR)问题,提出了一种新的鲁棒静态输出反馈控制设计。输出静态反馈控制器可以在所有状态变量都无法反馈的情况下使用。这样,控制器的设计就可以解决工厂所有状态变量都没有传感器的实际问题。此外,所提出的鲁棒控制方法使与不确定闭环线性系统的输出和控制信号相关的二次指标(保证代价)的上界最小。通过设计者对被控系统的了解,可以获得最优的性能。为了找到与系统性能相关的最佳保证代价,采用差分进化算法进行全局优化。该控制器在台架地震模拟器中实现,结果表明了该方法的有效性。在实现中,假设信号存在故障,即使存在故障,所提出的鲁棒控制也能减弱振荡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信