{"title":"Adaptive Neural Networks for Nonlinear Dynamic Systems Identification","authors":"Erwin Sitompul","doi":"10.1109/CIMSIM.2013.10","DOIUrl":null,"url":null,"abstract":"A new scheme for adaptive neural networks for nonlinear dynamic system identification is proposed in this paper. The network of structure multi-layer perceptron with external recurrence is trained offline at first to get the initial network parameters. The parameters of the network are classified into short-term memory part and long-term memory part. The short-term memory part includes the parameters which are linear to the network output. In the implementation, the network is validated in each sampling time using a set of new measurement data. Training procedure will be executed if the model error exceeds a specified value and the short-term memory part will be adjusted. The application in modelling of room thermal behaviour demonstrates the performance of the proposed scheme.","PeriodicalId":249355,"journal":{"name":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIM.2013.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A new scheme for adaptive neural networks for nonlinear dynamic system identification is proposed in this paper. The network of structure multi-layer perceptron with external recurrence is trained offline at first to get the initial network parameters. The parameters of the network are classified into short-term memory part and long-term memory part. The short-term memory part includes the parameters which are linear to the network output. In the implementation, the network is validated in each sampling time using a set of new measurement data. Training procedure will be executed if the model error exceeds a specified value and the short-term memory part will be adjusted. The application in modelling of room thermal behaviour demonstrates the performance of the proposed scheme.