A new optimization algorithm for solving NP-hard problems

E. Abdelhafiez, F. Alturki
{"title":"A new optimization algorithm for solving NP-hard problems","authors":"E. Abdelhafiez, F. Alturki","doi":"10.1109/ICMET.2010.5598491","DOIUrl":null,"url":null,"abstract":"The Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing, and Tabu search that belong to the Evolutionary Computations Algorithms (ECs) are not suitable for fine tuning structures as they neglect all conventional heuristics. In most of the NP-hard problems, the best solution rarely be completely random, it follows one or more rules (heuristics). In this paper a new algorithm titled “Shaking Optimization Algorithm” is proposed that follows the common methodology of the Evolutionary Computations while utilizing different heuristics during the evolution process of the solution. The proposed approach is applied to the Job Shop Scheduling problems (JSS) and gives promising results compared with that of GA, PSO, SA, and TS algorithms.","PeriodicalId":415118,"journal":{"name":"2010 International Conference on Mechanical and Electrical Technology","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Mechanical and Electrical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMET.2010.5598491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing, and Tabu search that belong to the Evolutionary Computations Algorithms (ECs) are not suitable for fine tuning structures as they neglect all conventional heuristics. In most of the NP-hard problems, the best solution rarely be completely random, it follows one or more rules (heuristics). In this paper a new algorithm titled “Shaking Optimization Algorithm” is proposed that follows the common methodology of the Evolutionary Computations while utilizing different heuristics during the evolution process of the solution. The proposed approach is applied to the Job Shop Scheduling problems (JSS) and gives promising results compared with that of GA, PSO, SA, and TS algorithms.
求解np困难问题的一种新的优化算法
进化计算算法中的遗传算法(GA)、粒子群算法(PSO)、模拟退火算法和禁忌搜索算法由于忽略了传统的启发式算法而不适用于结构的微调。在大多数np困难问题中,最佳解决方案很少是完全随机的,它遵循一个或多个规则(启发式)。本文提出了一种新的“抖动优化算法”,该算法遵循进化计算的常用方法,同时在解的进化过程中利用不同的启发式方法。将该方法应用于作业车间调度问题(Job Shop Scheduling problem, JSS),并与遗传算法(GA)、粒子群算法(PSO)、粒子群算法(SA)和TS算法进行了比较,取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信