Adaptive Label Smoothing for Classifier-based Mutual Information Neural Estimation

Xu Wang, A. Al-Bashabsheh, Chao Zhao, Chung Chan
{"title":"Adaptive Label Smoothing for Classifier-based Mutual Information Neural Estimation","authors":"Xu Wang, A. Al-Bashabsheh, Chao Zhao, Chung Chan","doi":"10.1109/ISIT45174.2021.9518097","DOIUrl":null,"url":null,"abstract":"Estimating the mutual information (MI) by neural networks has achieved significant practical success, especially in representation learning. Recent results further reduced the variance in the neural estimation by training a probabilistic classifier. However, the trained classifier tends to be overly confident about some of its predictions, which results in an overestimated MI that fails to capture the desired representation. To soften the classifier, we propose a novel scheme that smooths the label adaptively according to how extreme the probability estimates are. The resulting MI estimate is unbiased under a mild assumption on the model. Experimental results on MNIST and CIFAR10 datasets confirmed that our method yields better representation and achieves higher classification test accuracy among existing approaches in self-supervised representation learning.","PeriodicalId":299118,"journal":{"name":"2021 IEEE International Symposium on Information Theory (ISIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT45174.2021.9518097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Estimating the mutual information (MI) by neural networks has achieved significant practical success, especially in representation learning. Recent results further reduced the variance in the neural estimation by training a probabilistic classifier. However, the trained classifier tends to be overly confident about some of its predictions, which results in an overestimated MI that fails to capture the desired representation. To soften the classifier, we propose a novel scheme that smooths the label adaptively according to how extreme the probability estimates are. The resulting MI estimate is unbiased under a mild assumption on the model. Experimental results on MNIST and CIFAR10 datasets confirmed that our method yields better representation and achieves higher classification test accuracy among existing approaches in self-supervised representation learning.
基于互信息神经估计的自适应标签平滑
利用神经网络估计互信息(MI)已经取得了显著的实践成功,特别是在表示学习方面。最近的研究结果通过训练概率分类器进一步减少了神经估计中的方差。然而,经过训练的分类器往往对它的一些预测过于自信,这导致高估的MI无法捕获所需的表示。为了软化分类器,我们提出了一种新的方案,根据概率估计的极端程度自适应地平滑标签。所得的MI估计在对模型的温和假设下是无偏的。在MNIST和CIFAR10数据集上的实验结果证实了我们的方法在现有的自监督表示学习方法中具有更好的表示效果和更高的分类测试准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信