A Voice Activity Detection Model Composed of Bidirectional LSTM and Attention Mechanism

Yeonguk Yu, Yoonjoong Kim
{"title":"A Voice Activity Detection Model Composed of Bidirectional LSTM and Attention Mechanism","authors":"Yeonguk Yu, Yoonjoong Kim","doi":"10.1109/HNICEM.2018.8666342","DOIUrl":null,"url":null,"abstract":"In this study, we proposed a deep learning model that consists of the bidirectional Long-Short Term Memory (bi-LSTM) and the attention mechanism to perform frame-wise Voice Activity Detection (VAD). The bi-LSTM extracts annotations of frame by summarizing information from both direction. The attention mechanism accepts the annotations to extracts such frames that are important to the voice activity judgement and aggregates the representation of those informative frames to form an attention distribution vector. It is used as features for frame classification by logistic classification approach. We constructed four comparative models to perform experiments with TIMIT corpus and noise signals. The excrement shows that the proposed model outperforms the conventional VAD with LSTM. And we showed how the attention mechanism can help VAD tasks by visualizing the attention distribution of the model.","PeriodicalId":426103,"journal":{"name":"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2018.8666342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this study, we proposed a deep learning model that consists of the bidirectional Long-Short Term Memory (bi-LSTM) and the attention mechanism to perform frame-wise Voice Activity Detection (VAD). The bi-LSTM extracts annotations of frame by summarizing information from both direction. The attention mechanism accepts the annotations to extracts such frames that are important to the voice activity judgement and aggregates the representation of those informative frames to form an attention distribution vector. It is used as features for frame classification by logistic classification approach. We constructed four comparative models to perform experiments with TIMIT corpus and noise signals. The excrement shows that the proposed model outperforms the conventional VAD with LSTM. And we showed how the attention mechanism can help VAD tasks by visualizing the attention distribution of the model.
基于双向LSTM和注意机制的语音活动检测模型
在这项研究中,我们提出了一个由双向长短期记忆(bi-LSTM)和注意机制组成的深度学习模型来执行分帧语音活动检测(VAD)。bi-LSTM通过对两个方向的信息进行汇总来提取帧的注释。注意机制接受注释提取对语音活动判断有重要意义的帧,并将这些信息帧的表示聚合形成注意分布向量。将其作为特征,采用逻辑分类方法对框架进行分类。我们构建了四个比较模型,在TIMIT语料库和噪声信号下进行了实验。实验结果表明,该模型优于基于LSTM的传统VAD。我们展示了注意力机制如何通过可视化模型的注意力分布来帮助VAD任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信