J. Knobloch, S. Glunz, D. Biro, W. Warta, E. Schaffer, W. Wettling
{"title":"Solar cells with efficiencies above 21% processed from Czochralski grown silicon","authors":"J. Knobloch, S. Glunz, D. Biro, W. Warta, E. Schaffer, W. Wettling","doi":"10.1109/PVSC.1996.564029","DOIUrl":null,"url":null,"abstract":"Czochralski-Si (Cz-Si) of several manufacturers and with resistivities ranging from 1 to 13 /spl Omega/cm were processed into solar cells with efficiencies higher than 20% (AM1.5) using the LBSF/PERL processing sequence. The highest efficiency was 21.7%. The investigation of high efficiency Cz-Si solar cells was augmented by computer simulation and a study of the carrier lifetime before and after processing. A small degradation of solar cell performance in the lower resistivity material is discussed. Furthermore, a much simpler processing sequence is presented revealing efficiencies well above 19% on Cz-silicon and 21% on float zone-silicon.","PeriodicalId":410394,"journal":{"name":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.1996.564029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64
Abstract
Czochralski-Si (Cz-Si) of several manufacturers and with resistivities ranging from 1 to 13 /spl Omega/cm were processed into solar cells with efficiencies higher than 20% (AM1.5) using the LBSF/PERL processing sequence. The highest efficiency was 21.7%. The investigation of high efficiency Cz-Si solar cells was augmented by computer simulation and a study of the carrier lifetime before and after processing. A small degradation of solar cell performance in the lower resistivity material is discussed. Furthermore, a much simpler processing sequence is presented revealing efficiencies well above 19% on Cz-silicon and 21% on float zone-silicon.