PDMFRec

Erika Duriakova, E. Tragos, Barry Smyth, Neil Hurley, Francisco J. Peña, Panagiotis Symeonidis, James Geraci, A. Lawlor
{"title":"PDMFRec","authors":"Erika Duriakova, E. Tragos, Barry Smyth, Neil Hurley, Francisco J. Peña, Panagiotis Symeonidis, James Geraci, A. Lawlor","doi":"10.1145/3298689.3347035","DOIUrl":null,"url":null,"abstract":"Conventional approaches to matrix factorisation (MF) typically rely on a centralised collection of user data for building a MF model. This approach introduces an increased risk when it comes to user privacy. In this short paper we propose an alternative, user-centric, privacy enhanced, decentralised approach to MF. Our method pushes the computation of the recommendation model to the user's device, and eliminates the need to exchange sensitive personal information; instead only the loss gradients of local (device-based) MF models need to be shared. Moreover, users can select the amount and type of information to be shared, for enhanced privacy. We demonstrate the effectiveness of this approach by considering different levels of user privacy in comparison with state-of-the-art alternatives.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3347035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Conventional approaches to matrix factorisation (MF) typically rely on a centralised collection of user data for building a MF model. This approach introduces an increased risk when it comes to user privacy. In this short paper we propose an alternative, user-centric, privacy enhanced, decentralised approach to MF. Our method pushes the computation of the recommendation model to the user's device, and eliminates the need to exchange sensitive personal information; instead only the loss gradients of local (device-based) MF models need to be shared. Moreover, users can select the amount and type of information to be shared, for enhanced privacy. We demonstrate the effectiveness of this approach by considering different levels of user privacy in comparison with state-of-the-art alternatives.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信