Hand Gesture Recognition with Gaussian Scaling and Kirsch Edge Rotation

S. Narayan, S. Vipparthi, A. P. Mazumdar
{"title":"Hand Gesture Recognition with Gaussian Scaling and Kirsch Edge Rotation","authors":"S. Narayan, S. Vipparthi, A. P. Mazumdar","doi":"10.1109/ICIIS51140.2020.9342716","DOIUrl":null,"url":null,"abstract":"Hand gesture recognition is a vital aspect of robotic vision models. This paper presents a fusion based approach for hand gesture recognition. In this approach, we first extract the Gaussian scale space of an image and compute features on different scales. Kirsch’s convolution mask is then applied on the feature map. The aim of the proposed approach is to remove unwanted information extract scale, rotation, and illumination invariant patterns from hand gestures. The final feature vector is aggregated through the concatenation of multiscale histograms. The Support Vector Machine classifier is demonstrated using extracted features. Moreover, we calculate the progress efficiency of proposed methods on three distinct databases by conducting experiments viz, Thomson, Bochum, and HGRI. The proposed method achieves classification accuracies of 94.25%, 92.77%, and 95.78% respectively on the investigated databases that outperform the existing approaches for hand gesture recognition","PeriodicalId":352858,"journal":{"name":"2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIS51140.2020.9342716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hand gesture recognition is a vital aspect of robotic vision models. This paper presents a fusion based approach for hand gesture recognition. In this approach, we first extract the Gaussian scale space of an image and compute features on different scales. Kirsch’s convolution mask is then applied on the feature map. The aim of the proposed approach is to remove unwanted information extract scale, rotation, and illumination invariant patterns from hand gestures. The final feature vector is aggregated through the concatenation of multiscale histograms. The Support Vector Machine classifier is demonstrated using extracted features. Moreover, we calculate the progress efficiency of proposed methods on three distinct databases by conducting experiments viz, Thomson, Bochum, and HGRI. The proposed method achieves classification accuracies of 94.25%, 92.77%, and 95.78% respectively on the investigated databases that outperform the existing approaches for hand gesture recognition
基于高斯缩放和基尔希边缘旋转的手势识别
手势识别是机器人视觉模型的一个重要方面。提出了一种基于融合的手势识别方法。在该方法中,我们首先提取图像的高斯尺度空间,并计算不同尺度上的特征。然后在特征映射上应用Kirsch卷积掩模。该方法的目的是去除不需要的信息,从手势中提取尺度、旋转和照明不变模式。最后的特征向量通过多尺度直方图的拼接进行聚合。使用提取的特征来演示支持向量机分类器。此外,我们还通过Thomson、Bochum和HGRI三个不同的数据库进行实验,计算了所提出方法在三个不同数据库上的进展效率。该方法在调查的数据库上的分类准确率分别为94.25%、92.77%和95.78%,优于现有的手势识别方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信