Harmful algal blooms prediction with machine learning models in Tolo Harbour

Xiu Li, Jin Yu, Zhuo Jia, Jingdong Song
{"title":"Harmful algal blooms prediction with machine learning models in Tolo Harbour","authors":"Xiu Li, Jin Yu, Zhuo Jia, Jingdong Song","doi":"10.1109/SMARTCOMP.2014.7043865","DOIUrl":null,"url":null,"abstract":"Machine learning (ML) techniques such as artificial neural network (ANN) and support vector machine (SVM) have been increasingly used to predict harmful algal blooms (HABs). In this paper, we use the biweekly data in Tolo Harbour, Hong Kong, and choose several machine learning methods to develop prediction models of algal blooms. Three different kinds of models are designed based on back-propagation (BP) neural network, generalized regression neural network (GRNN) and support vector machine (SVM) respectively. The experimental results show that the improved BP algorithm and SVM work better than GRNN methods, and the models based on SVM present the best performance in terms of goodness-of-fit measures, but need to be further improved in the running time. We develop these prediction models with different lead time (7-day and 14-day) to study further. The results indicate that the use of biweekly data can simulate the general trend of algal biomass reasonably, but it is not ideally suited for exact predictions. The use of higher frequency data may improve the accuracy of the predictions.","PeriodicalId":169858,"journal":{"name":"2014 International Conference on Smart Computing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Smart Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP.2014.7043865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Machine learning (ML) techniques such as artificial neural network (ANN) and support vector machine (SVM) have been increasingly used to predict harmful algal blooms (HABs). In this paper, we use the biweekly data in Tolo Harbour, Hong Kong, and choose several machine learning methods to develop prediction models of algal blooms. Three different kinds of models are designed based on back-propagation (BP) neural network, generalized regression neural network (GRNN) and support vector machine (SVM) respectively. The experimental results show that the improved BP algorithm and SVM work better than GRNN methods, and the models based on SVM present the best performance in terms of goodness-of-fit measures, but need to be further improved in the running time. We develop these prediction models with different lead time (7-day and 14-day) to study further. The results indicate that the use of biweekly data can simulate the general trend of algal biomass reasonably, but it is not ideally suited for exact predictions. The use of higher frequency data may improve the accuracy of the predictions.
利用机器学习模型预测吐露港的有害藻华
人工神经网络(ANN)和支持向量机(SVM)等机器学习技术已越来越多地用于有害藻华(HABs)的预测。本文利用香港吐露港的双周数据,选择几种机器学习方法建立了藻华预测模型。分别基于BP神经网络(BP)、广义回归神经网络(GRNN)和支持向量机(SVM)设计了三种模型。实验结果表明,改进后的BP算法和SVM比GRNN方法效果更好,基于SVM的模型在拟合优度指标上表现最好,但在运行时间上有待进一步改进。我们建立了不同提前期(7天和14天)的预测模型,以进一步研究。结果表明,利用双周数据可以合理地模拟藻类生物量的总体趋势,但不适合精确预测。使用频率较高的数据可以提高预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信