Automatic construction of a neuro-fuzzy vulnerability risk analysis model

Yuliia Tatarinova, O. Sinelnikova
{"title":"Automatic construction of a neuro-fuzzy vulnerability risk analysis model","authors":"Yuliia Tatarinova, O. Sinelnikova","doi":"10.1109/STC-CSIT.2019.8929770","DOIUrl":null,"url":null,"abstract":"This article presents a method for automating the construction of a fuzzy model for assessing and prioritizing the risks of vulnerability based on information obtained from open sources and the CVE database. The formation of the base of rules and parameters of the membership functions was automated by using the adaptive neuro-fuzzy inference system (ANFIS). The comparison of the obtained results with the previously determined fuzzy model, the formation of the parameters of which was performed manually, is presented","PeriodicalId":271237,"journal":{"name":"2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 14th International Conference on Computer Sciences and Information Technologies (CSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STC-CSIT.2019.8929770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article presents a method for automating the construction of a fuzzy model for assessing and prioritizing the risks of vulnerability based on information obtained from open sources and the CVE database. The formation of the base of rules and parameters of the membership functions was automated by using the adaptive neuro-fuzzy inference system (ANFIS). The comparison of the obtained results with the previously determined fuzzy model, the formation of the parameters of which was performed manually, is presented
神经模糊脆弱性风险分析模型的自动构建
本文提出了一种基于开源信息和CVE数据库,自动化构建漏洞风险评估和优先级模糊模型的方法。采用自适应神经模糊推理系统(ANFIS)自动生成规则基和隶属函数参数。将所得结果与先前确定的模糊模型进行了比较,其中参数的形成是手动进行的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信